Results 41 to 50 of about 39,478 (331)

Taylor’s Formula for Generalized Weighted Fractional Derivatives with Nonsingular Kernels

open access: yesAxioms, 2022
We prove a new Taylor’s theorem for generalized weighted fractional calculus with nonsingular kernels. The proof is based on the establishment of new relations for nth-weighted generalized fractional integrals and derivatives. As an application, new mean
Houssine Zine   +3 more
doaj   +1 more source

Fractional integration and the hyperbolic derivative [PDF]

open access: yesBulletin of the Australian Mathematical Society, 1988
We improve S. Yamashita's hyperbolic version of the well-known Hardy-Littlewood theorem. Let f be holomorphic and bounded by one in the unit disc D. If (f#)p has a harmonic mojorant in D for some p, p > 0, then so does σ(f)q for all q, 0 < q < ...
openaire   +2 more sources

On the Theory of Fractional Calculus in the Pettis-Function Spaces

open access: yesJournal of Function Spaces, 2018
Throughout this paper, we outline some aspects of fractional calculus in Banach spaces. Some examples are demonstrated. In our investigations, the integrals and the derivatives are understood as Pettis integrals and the corresponding derivatives.
Hussein A. H. Salem
doaj   +1 more source

Operational Calculus for the General Fractional Derivatives of Arbitrary Order

open access: yesMathematics, 2022
In this paper, we deal with the general fractional integrals and the general fractional derivatives of arbitrary order with the kernels from a class of functions that have an integrable singularity of power function type at the origin.
Maryam Al-Kandari   +2 more
doaj   +1 more source

On the 1st-Level General Fractional Derivatives of Arbitrary Order

open access: yesFractal and Fractional, 2023
In this paper, the 1st-level general fractional derivatives of arbitrary order are defined and investigated for the first time. We start with a generalization of the Sonin condition for the kernels of the general fractional integrals and derivatives and ...
Yuri Luchko
doaj   +1 more source

k-Weyl fractional derivative, integral and integral transform

open access: yesInternational Journal of Contemporary Mathematical Sciences, 2013
In this paper we define a new fractional derivative in the k-calculus context, the k-Weyl fractional derivative. Also we study the action of Laplace and Stieltjes Transforms on the new fractional operator and the k-Weyl Fractional Integral operator introduced by Romero, Cerutti, Dorrego (cf. [7]).
L. G. Romero, L. L. Luque
openaire   +1 more source

Time-Fractional Optimal Control of Initial Value Problems on Time Scales

open access: yes, 2019
We investigate Optimal Control Problems (OCP) for fractional systems involving fractional-time derivatives on time scales. The fractional-time derivatives and integrals are considered, on time scales, in the Riemann--Liouville sense.
A Ahmadkhanlu   +43 more
core   +1 more source

A new Generalized fractional derivative and integral

open access: yes, 2017
In this article, we introduce a new general definition of fractional derivative and fractional integral, which depends on an unknown kernel. By using these definitions, we obtain the basic properties of fractional integral and fractional derivative such as Product Rule, Quotient Rule, Chain Rule, Roll's Theorem and Mean Value Theorem.
AKKURT, Abdullah   +2 more
openaire   +3 more sources

Phosphatidylinositol 4‐kinase as a target of pathogens—friend or foe?

open access: yesFEBS Letters, EarlyView.
This graphical summary illustrates the roles of phosphatidylinositol 4‐kinases (PI4Ks). PI4Ks regulate key cellular processes and can be hijacked by pathogens, such as viruses, bacteria and parasites, to support their intracellular replication. Their dual role as essential host enzymes and pathogen cofactors makes them promising drug targets.
Ana C. Mendes   +3 more
wiley   +1 more source

New Approaches to Fractal–Fractional Bullen’s Inequalities Through Generalized Convexity

open access: yesFractal and Fractional
This paper introduces a new identity involving fractal–fractional integrals, which allow us to derive several new Bullen-type inequalities via generalized convexity.
Wedad Saleh   +4 more
doaj   +1 more source

Home - About - Disclaimer - Privacy