Dirichlet heat kernel estimates for fractional Laplacian with gradient perturbation [PDF]
Zhen-Qing Chen, Panki Kim, Renming Song
openalex +1 more source
Asymmetric critical fractional p-Laplacian problems
We consider the asymmetric critical fractional p-Laplacian problem $$\displaylines{ (-\Delta)^s_p u = \lambda |u|^{p-2} u + u^{p^\ast_s - 1}_+,\quad \text{in } \Omega;\cr u = 0, \quad \text{in } \mathbb{R}^N\setminus\Omega; }$$ where $\lambda>0 ...
Li Huang, Yang Yang
doaj
Optimization problems in rearrangement classes for fractional $ p $-Laplacian equations
We discuss two optimization problems related to the fractional $ p $-Laplacian. First, we prove the existence of at least one minimizer for the principal eigenvalue of the fractional $ p $-Laplacian with Dirichlet conditions, with a bounded weight ...
Antonio Iannizzotto, Giovanni Porru
doaj +1 more source
Estimates of Green Function for some perturbations of fractional Laplacian
Tomasz Grzywny, Michał Ryznar
openalex +2 more sources
Stability of nonlinear Dirichlet BVPs governed by fractional Laplacian. [PDF]
Bors D.
europepmc +1 more source
Intrinsic ultracontractivity for Schrodinger operators based on fractional Laplacians
Kamil Kaleta, Tadeusz Kulczycki
openalex +2 more sources
In this work, we establish the existence of solutions for the nonlinear nonlocal system of equations involving the fractional Laplacian, \begin{gather*} \begin{aligned} (-\Delta)^s u & = au+bv+\frac{2p}{p+q}\int_{\Omega}\frac{|v(y)|^q}{|x-y|^\mu}dy|
Yang Yang, Qian Yu Hong, Xudong Shang
doaj
On the Order of the Fractional Laplacian in Determining the Spatio-Temporal Evolution of a Space-Fractional Model of Cardiac Electrophysiology. [PDF]
Cusimano N+3 more
europepmc +1 more source
Singular solutions of fractional order conformal Laplacians
María del Mar González+2 more
openalex +2 more sources
A generalization of the Littlewood-Paley inequality for the fractional Laplacian $(-Δ)^{α/2}$
Ildoo Kim, Kyeong-Hun Kim
openalex +2 more sources