Results 41 to 50 of about 31,295 (230)

Fractional Laplacian in conformal geometry [PDF]

open access: yesAdvances in Mathematics, 2011
In this note, we study the connection between the fractional Laplacian operator that appeared in the recent work of Caffarelli-Silvestre and a class of conformally covariant operators in conformal geometry.
González Nogueras, María del Mar   +1 more
openaire   +5 more sources

Mellin definition of the fractional Laplacian

open access: yesFractional Calculus and Applied Analysis, 2023
It is known that at least ten equivalent definitions of the fractional Laplacian exist in an unbounded domain. Here we derive a further equivalent definition that is based on the Mellin transform and it can be used when the fractional Laplacian is applied to radial functions.
Gianni Pagnini, Claudio Runfola
openaire   +3 more sources

Path Laplacians versus fractional Laplacians as nonlocal operators on networks

open access: yesNew Journal of Physics, 2021
Here we study and compare nonlocal diffusion processes on networks based on two different kinds of Laplacian operators. We prove that a nonlocal diffusion process on a network based on the path Laplacian operator always converges faster than the standard
Ernesto Estrada
doaj   +1 more source

A fractional generalization of the classical lattice dynamics approach [PDF]

open access: yes, 2016
We develop physically admissible lattice models in the harmonic approximation which define by Hamilton's variational principle fractional Laplacian matrices of the forms of power law matrix functions on the n-dimensional periodic and infinite lattice in ...
A.F. Nowakowski   +33 more
core   +4 more sources

Existence and Uniqueness of Solutions to Four-Point Impulsive Fractional Differential Equations with p-Laplacian Operator

open access: yesMathematics, 2022
In this paper, by using fixed-point theorems, the existence and uniqueness of positive solutions to a class of four-point impulsive fractional differential equations with p-Laplacian operators are studied. In addition, three examples are given to justify
Limin Chu   +3 more
doaj   +1 more source

Lower bounds for fractional Laplacian eigenvalues [PDF]

open access: yesCommunications in Contemporary Mathematics, 2014
In this paper, we investigate eigenvalues of fractional Laplacian (–Δ)α/2|D, where α ∈ (0, 2], on a bounded domain in an n-dimensional Euclidean space and obtain a sharper lower bound for the sum of its eigenvalues, which improves some results due to Yildirim Yolcu and Yolcu in [Estimates for the sums of eigenvalues of the fractional Laplacian on a ...
Lingzhong Zeng, He-Jun Sun, Guoxin Wei
openaire   +3 more sources

Getting Acquainted with the Fractional Laplacian [PDF]

open access: yes, 2019
updated version, 72 pages, 12 ...
Abatangelo N., Valdinoci E.
openaire   +3 more sources

Fractional Laplacian system involving doubly critical nonlinearities in $\mathbb{R}^N$

open access: yesElectronic Journal of Qualitative Theory of Differential Equations, 2017
In this article, we are interested in a fractional Laplacian system in $\mathbb{R}^N$, which involves critical Sobolev-type nonlinearities and critical Hardy–Sobolev-type nonlinearities.
Li Wang, Binlin Zhang, Haijin Zhang
doaj   +1 more source

Solutions for nonhomogeneous fractional (p, q)-Laplacian systems with critical nonlinearities

open access: yesAdvances in Nonlinear Analysis, 2022
In this article, we aimed to study a class of nonhomogeneous fractional (p, q)-Laplacian systems with critical nonlinearities as well as critical Hardy nonlinearities in RN{{\mathbb{R}}}^{N}.
Tao Mengfei, Zhang Binlin
doaj   +1 more source

Existence of Multiple Weak Solutions to a Discrete Fractional Boundary Value Problem

open access: yesAxioms, 2023
The existence of at least three weak solutions to a discrete fractional boundary value problem containing a p-Laplacian operator and subject to perturbations is proved using variational methods. Some applications of the main results are presented.
Shahin Moradi   +2 more
doaj   +1 more source

Home - About - Disclaimer - Privacy