Numerical Solution of Fractional Elliptic Problems with Inhomogeneous Boundary Conditions
The numerical solution of fractional-order elliptic problems is investigated in bounded domains. According to real-life situations, we assumed inhomogeneous boundary terms, while the underlying equations contain the full-space fractional Laplacian ...
Gábor Maros, Ferenc Izsák
doaj +1 more source
A fractional generalization of the classical lattice dynamics approach [PDF]
We develop physically admissible lattice models in the harmonic approximation which define by Hamilton's variational principle fractional Laplacian matrices of the forms of power law matrix functions on the n-dimensional periodic and infinite lattice in ...
A.F. Nowakowski +33 more
core +4 more sources
Path Laplacians versus fractional Laplacians as nonlocal operators on networks
Here we study and compare nonlocal diffusion processes on networks based on two different kinds of Laplacian operators. We prove that a nonlocal diffusion process on a network based on the path Laplacian operator always converges faster than the standard
Ernesto Estrada
doaj +1 more source
In this paper, by using fixed-point theorems, the existence and uniqueness of positive solutions to a class of four-point impulsive fractional differential equations with p-Laplacian operators are studied. In addition, three examples are given to justify
Limin Chu +3 more
doaj +1 more source
Solutions for nonhomogeneous fractional (p, q)-Laplacian systems with critical nonlinearities
In this article, we aimed to study a class of nonhomogeneous fractional (p, q)-Laplacian systems with critical nonlinearities as well as critical Hardy nonlinearities in RN{{\mathbb{R}}}^{N}.
Tao Mengfei, Zhang Binlin
doaj +1 more source
Fractional Laplacian system involving doubly critical nonlinearities in $\mathbb{R}^N$
In this article, we are interested in a fractional Laplacian system in $\mathbb{R}^N$, which involves critical Sobolev-type nonlinearities and critical Hardy–Sobolev-type nonlinearities.
Li Wang, Binlin Zhang, Haijin Zhang
doaj +1 more source
Existence of Multiple Weak Solutions to a Discrete Fractional Boundary Value Problem
The existence of at least three weak solutions to a discrete fractional boundary value problem containing a p-Laplacian operator and subject to perturbations is proved using variational methods. Some applications of the main results are presented.
Shahin Moradi +2 more
doaj +1 more source
Gevrey smoothing for weak solutions of the fully nonlinear homogeneous Boltzmann and Kac equations without cutoff for Maxwellian molecules [PDF]
It has long been suspected that the non-cutoff Boltzmann operator has similar coercivity properties as a fractional Laplacian. This has led to the hope that the homogenous Boltzmann equation enjoys similar regularity properties as the heat equation with ...
Barbaroux, Jean-Marie +3 more
core +3 more sources
MOND-like fractional Laplacian theory [PDF]
I provide a derivation of some characteristic effects of Milgrom's modified Newtonian dynamics (MOND) from a fractional version of Newton's theory based on the fractional Poisson equation. I employ the properties of the fractional Laplacian to investigate the features of the fundamental solution of the proposed model.
openaire +3 more sources
Global Heat Kernel Estimates for Fractional Laplacians in Unbounded Open Sets [PDF]
In this paper, we derive global sharp heat kernel estimates for symmetric alpha-stable processes (or equivalently, for the fractional Laplacian with zero exterior condition) in two classes of unbounded C^{1,1} open sets in R^d: half-space-like open sets ...
Chen, Zhen-Qing, Tokle, Joshua
core +3 more sources

