Results 61 to 70 of about 393,013 (283)
Getting Acquainted with the Fractional Laplacian [PDF]
updated version, 72 pages, 12 ...
Abatangelo N., Valdinoci E.
openaire +3 more sources
A biomimetic model for the cysteine dioxygenase (CDO) was found to be also capable of selectively dioxygenating selenocysteamine, suggesting that the lack of reactivity found for the CDO in combination with selenocysteine originates in the protein matrix.
Kilian Weißer+9 more
wiley +2 more sources
Fractional Laplacian system involving doubly critical nonlinearities in $\mathbb{R}^N$
In this article, we are interested in a fractional Laplacian system in $\mathbb{R}^N$, which involves critical Sobolev-type nonlinearities and critical Hardy–Sobolev-type nonlinearities.
Li Wang, Binlin Zhang, Haijin Zhang
doaj +1 more source
Solutions for nonhomogeneous fractional (p, q)-Laplacian systems with critical nonlinearities
In this article, we aimed to study a class of nonhomogeneous fractional (p, q)-Laplacian systems with critical nonlinearities as well as critical Hardy nonlinearities in RN{{\mathbb{R}}}^{N}.
Tao Mengfei, Zhang Binlin
doaj +1 more source
Existence of Multiple Weak Solutions to a Discrete Fractional Boundary Value Problem
The existence of at least three weak solutions to a discrete fractional boundary value problem containing a p-Laplacian operator and subject to perturbations is proved using variational methods. Some applications of the main results are presented.
Shahin Moradi+2 more
doaj +1 more source
Overdetermined problems with fractional laplacian [PDF]
Added a missing assumption (1.3) in Theorem 1.1 and Theorem 1.2, which is used in the proof of Lemma 4 ...
Sven Jarohs, Mouhamed Moustapha Fall
openaire +3 more sources
A mixed operator approach to peridynamics
In the present paper we propose a model describing the nonlocal behavior of an elastic body using a peridynamical approach. Indeed, peridynamics is a suitable framework for problems where discontinuities appear naturally, such as fractures, dislocations,
Federico Cluni +4 more
doaj +1 more source
Fractional conformal Laplacians and fractional Yamabe problems [PDF]
Based on the relations between scattering operators of asymptotically hyperbolic metrics and Dirichlet-to-Neumann operators of uniformly degenerate elliptic boundary value problems, we formulate fractional Yamabe problems that include the boundary Yamabe problem studied by Escobar.
González Nogueras, María del Mar+1 more
openaire +7 more sources
Solutions for the Problems Involving Fractional Laplacian and Indefinite Potentials
In this paper, we consider a class of Schrödinger equations involving fractional Laplacian and indefinite potentials. By modifying the definition of the Nehari–Pankov manifold, we prove the existence and asymptotic behavior of least energy solutions.
Tang Zhongwei, Wang Lushun
doaj +1 more source
A note on the existence and multiplicity of solutions for sublinear fractional problems
In this paper, we study the existence of weak solutions for fractional p-Laplacian equations with sublinear growth and oscillatory behavior as the following L K p u = λ f ( x , u ) in Ω , u = 0 in R N ∖ Ω , $$ \begin{aligned} &\mathcal{L}^{p}_{K}u ...
Yongqiang Fu
doaj +1 more source