Results 101 to 110 of about 1,032,914 (333)
A minimally invasive, transepithelial corneal cross‐linking (TE‐CXL) approach is presented using upconversion nanoparticles (UCNPs)‐loaded contact lenses (UCLs), after topical delivery of hyaluronate–riboflavin conjugates. The NIR‐to‐UV/blue light conversion by UCNPs in a UCL can activate riboflavin for TE‐CXL, resulting in the biomechanical strength ...
Gibum Lee +8 more
wiley +1 more source
An advanced F‐doped and ─CN group co‐modified FCCN is developed. Due to the synergistic effects of co‐modification in promoting photogenerated exciton generation, enhancing charge kinetics, expanding active interfacial areas, and optimizing CO2 interfacial reactions, the FCCN photocatalyst demonstrates excellent catalytic performance and high ...
Sheng‐Qi Guo +9 more
wiley +1 more source
Caracterização por FT-IR de agentes de cura utilizados em resinas epoxídicas-II-polimercaptana, poliaminoamida e amina modificada [PDF]
Amostras de resina epoxídica (EP) curadas com compostos à base depolimercaptana (SH), SH na presença de poliamino amida, e amina modificada, constituindo, respectivamente, os sistemas epoxídicos (SE) 1, 2 e 3, foram preparadas segundo condições ...
Benedita M. V. Romão +6 more
doaj
Authentication of cinnamon spice samples using FT-IR spectroscopy and chemometric classification
Panagiota Lixourgioti +5 more
semanticscholar +1 more source
3D Digital Light Processing of Redox‐Active Polymers for Electrochemical Applications
3D printing of electrochemically switchable conducting polymers is achieved by Digital Light Processing of redox‐active carbazole‐based polymer materials. Complex 2D and 3D architectures including dot arrays and pyramids clearly show the potential for novel 3D switchable electrochemical devices for sensors, electrochromic displays as well as 3D printed
Christian Delavier +4 more
wiley +1 more source
Fe─NC porous oxygen reduction electrocatalysts are prepared employing a 2,4,6‐Triaminopyrimidine‐based porous organic polymer, a Mg2+ Lewis acid, and a low‐temperature cation exchange protocol. Using the polymer precursor achieves high pyrolysis yields and results in atomically dispersed FeNx sites. The resulting catalysts feature hierarchical porosity
Eliot Petitdemange +11 more
wiley +1 more source
A FeN4─O/Clu@NC‐0.1Ac catalyst containing atomically‐dispersed FeN4─O sites (medium‐spin Fe2+) and Fe clusters delivered a half‐wave potential of 0.89 V for ORR and an overpotential of 330 mV at 10 mA cm−2 for OER in 0.1 m KOH. When the catalyst was used in a rechargeable Zn–air battery, a power density of 284.5 mW cm−2 was achieved with excellent ...
Yongfang Zhou +8 more
wiley +1 more source

