Results 291 to 300 of about 2,068,966 (378)

From Food to Power: Hydrogel Thermoelectrics for Ingestible Electronics

open access: yesAdvanced Functional Materials, EarlyView.
We introduce a fully edible thermoelectric–electrochromic platform that harvests heat from food and converts it into a visible color change. N‐type and p‐type hydrogel thermoelectric generators connected in series power anthocyanin‐based electrochromic displays, demonstrating the feasibility of safe, biodegradable, ingestible systems for on‐food ...
Antonia Georgopoulou   +3 more
wiley   +1 more source

Localized High‐Concentration Electrolyte with Water‐Miscible Diluent Enables Stable Zinc Deposition and Long‐Life Aqueous Zinc Metal Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A diisopropyl ether (DIPE)‐based, localized, high‐concentration electrolyte is developed to stabilize both electrodes in aqueous zinc batteries. By reducing water activity and promoting anion‐rich zinc‐ion solvation, it builds robust interphases at both the cathode and anode, ensuring uniform deposition, suppressed corrosion, and highly reversible ...
Yuxuan Wu   +4 more
wiley   +1 more source

Follow the Path: Unveiling an Azole Resistant Candida parapsilosis Outbreak by FTIR Spectroscopy and STR Analysis. [PDF]

open access: yesJ Fungi (Basel)
De Carolis E   +8 more
europepmc   +1 more source

Mechanistic Insights into a Synergistic FeOx/Fe‐N4 System for Practical Nitrate Abatement with Value‐Added Ammonia Recovery

open access: yesAdvanced Functional Materials, EarlyView.
This work provides a novel interpretation of the nitrate reduction mechanism on iron oxides (FeOx) by employing constant‐potential density functional calculations and reports the design and synthesis of a robust and high‐performance Fe3O4/Fe‐N4‐C catalyst with remarkable Faradaic efficiency, current density, and stability under practical reaction ...
Qiang Zhou   +8 more
wiley   +1 more source

Dual‐Interface‐Dominant Cathode Architectures Enabling Fast Sulfur Redox and Stable Interfaces in All‐Solid‐State Li‐S Batteries

open access: yesAdvanced Functional Materials, EarlyView.
An optimized carbon host nanostructure enables a dual‐interface‐dominant architecture in sulfur cathodes of solid‐state Li‐S batteries by selectively forming sulfur|carbon and sulfur|solid electrolyte interfaces. This tailored interfacial configuration accelerates sulfur redox kinetics by establishing enriched Li+/e– transport networks, while ...
Zhao Yang   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy