Results 1 to 10 of about 152,344 (258)
ORTHOGONAL INVOLUTIONS ON CENTRAL SIMPLE ALGEBRAS AND FUNCTION FIELDS OF SEVERI-BRAUER VARIETIES [PDF]
An orthogonal involution $ $ on a central simple algebra $A$, after scalar extension to the function field $\mathcal{F}(A)$ of the Severi--Brauer variety of $A$, is adjoint to a quadratic form $q_ $ over $\mathcal{F}(A)$, which is uniquely defined up to a scalar factor.
Anne Quéguiner-Mathieu+1 more
+9 more sources
L-functions with large analytic rank and abelian varieties with large algebraic rank over function fields [PDF]
To appear in Inventiones ...
Douglas Ulmer
openalex +5 more sources
Partial Zeta Functions of Algebraic Varieties over Finite Fields
By restricting the variables running over various (possibly different) subfields, we introduce the notion of a partial zeta function. We prove that the partial zeta function is rational in an interesting case, generalizing Dwork's well known rationality theorem. In general, the partial zeta function is probably not rational.
Daqing Wan
openalex +6 more sources
Appell-Lauricella hypergeometric functions over finite fields and algebraic varieties [PDF]
26 ...
A. Nakagawa
+5 more sources
Parametric Expansions of an Algebraic Variety Near Its Singularities II
The paper is a continuation and completion of the paper Bruno, A.D.; Azimov, A.A. Parametric Expansions of an Algebraic Variety Near Its Singularities.
Alexander D. Bruno, Alijon A. Azimov
doaj +2 more sources
Algebraic varieties and function fields over a finite field
Nous nous intéressons au nombre de points rationnels des variétés algébriques projectives sur un corps fini. Nous déterminons notamment la fonction zêta (et plus précisément les polynômes caractéristiques de l'endomorphisme de Frobenius sur les espaces de cohomologie étale l-adique) des courbes algébriques projectives sans autre hypothèse de lissité ou
Yves Aubry
openalex +3 more sources
IwasawaL-functions of varieties over algebraic number fields
Peter Schneider
openalex +3 more sources
Differential Function Fields and Moduli of Algebraic Varieties [PDF]
Alexandru Buium
openalex +2 more sources
On rank in algebraic closure [PDF]
Let $ {\mathbf k} $ be a field and $Q\in {\mathbf k}[x_1, \ldots, x_s]$ a form (homogeneous polynomial) of degree $d>1.$ The ${\mathbf k}$-Schmidt rank $rk_{\mathbf k}(Q)$ of $Q$ is the minimal $r$ such that $Q= \sum_{i=1}^r R_iS_i$ with $R_i, S_i \in ...
Amichai Lampert, T. Ziegler
semanticscholar +1 more source