Results 21 to 30 of about 1,260 (149)

Unveiling Phonon Contributions to Thermal Conductivity and the Applicability of the Wiedemann—Franz Law in Ruthenium and Tungsten Thin Films

open access: yesAdvanced Functional Materials, EarlyView.
Thermal transport in Ru and W thin films is studied using steady‐state thermoreflectance, ultrafast pump–probe spectroscopy, infrared‐visible spectroscopy, and computations. Significant Lorenz number deviations reveal strong phonon contributions, reaching 45% in Ru and 62% in W.
Md. Rafiqul Islam   +14 more
wiley   +1 more source

Direct Evidence of Topological Dirac Fermions in a Low Carrier Density Correlated 5d Oxide

open access: yesAdvanced Functional Materials, EarlyView.
The 5d oxide BiRe2O6 is discovered as a low‐carrier‐density topological semimetal hosting symmetry‐protected Dirac fermions stabilized by nonsymmorphic symmetries. Angle‐resolved photoemission spectroscopy, quantum oscillations, and magnetotransport measurements reveal gapless Dirac cones, quasi‐2D Fermi surfaces, high carrier mobility, and a field ...
Premakumar Yanda   +11 more
wiley   +1 more source

A Bespoke Programmable Interpenetrating Elastomer Network Composite Laryngeal Stent for Expedited Paediatric Laryngotracheal Reconstruction

open access: yesAdvanced Functional Materials, EarlyView.
A programmable interpenetrating double‐network architecture, created via 3D‐TIPS printing and resin infusion, synergistically combines thermoplastic and thermosetting elastomers to balance structural rigidity and surface softness—crucial for paediatric laryngeal stents.
Elizabeth F. Maughan   +14 more
wiley   +1 more source

Universal In Situ Isotope Exchange Raman Spectroscopy (IERS) Methodology for Measuring Oxygen Surface Exchange Dynamics Using a Probe Layer

open access: yesAdvanced Functional Materials, EarlyView.
A bespoke multilayer thin film configuration has been designed, which overcomes the material dependency of conventional isotope exchange Raman spectroscopy (IERS). This universal IERS methodology is efficient, non‐destructive and provides additional structural information and time resolution, which can be further extended to various isotopic elements ...
Zonghao Shen   +7 more
wiley   +1 more source

Phase Change Material‐Driven Tunable Metasurface for Adaptive Terahertz Sensing and Communication in 6G Perceptive Networks

open access: yesAdvanced Functional Materials, EarlyView.
This study explores the benefits of metasurfaces made from functional materials, highlighting their ability to be adapted and improved for various high‐frequency applications, including communications and sensing. It first demonstrates the potential of these functional material‐based metasurfaces to advance the field of sub‐THz perceptive networks ...
Yat‐Sing To   +5 more
wiley   +1 more source

Golden‐Ratio–Guided Aperiodic Architected Metamaterials with Simultaneously Enhanced Strength and Toughness

open access: yesAdvanced Functional Materials, EarlyView.
Guided by the golden ratio, a class of aperiodic architected metamaterials is introduced to address the intrinsic trade‐off between strength and toughness. By unifying local geometric heterogeneity with global order, the golden‐ratio‐guided aperiodic architecture promotes spatial delocalization of damage tolerence regions, leading to more tortuous ...
Junjie Deng   +9 more
wiley   +1 more source

Local Thermal Conductivity Patterning in Rotating Lattice Crystals of Anisotropic Sb2S3

open access: yesAdvanced Functional Materials, EarlyView.
Microscale control of thermal conductivity in Sb2S3 is demonstrated via laser‐induced rotating lattice crystals. Thermal conductivity imaging reveals marked thermal transport anisotropy, with the c axis featuring amorphous‐like transport, whereas in‐plane directions (a, b) exhibit 3.5x and 1.7x larger thermal conductivity.
Eleonora Isotta   +13 more
wiley   +1 more source

Self‐Trapped Hole Migration and Defect‐Mediated Thermal Quenching of Luminescence in α‐ and β‐Ga2O3

open access: yesAdvanced Functional Materials, EarlyView.
Temperature‐dependent photoluminescence and first‐principles calculations reveal self‐trapped hole migration as the microscopic origin of thermal quenching in α‐ and β‐Ga2O3. The low migration barrier in α‐Ga2O3 enables defect trapping and enhances blue luminescence, while the higher barrier in β‐Ga2O3 preserves ultraviolet emission at elevated ...
Nima Hajizadeh   +11 more
wiley   +1 more source

The Dynamics of Interfacial Trap States in High‐Detectivity Near‐Infrared Photomultiplication Organic Photodetectors

open access: yesAdvanced Functional Materials, EarlyView.
Photomultiplication organic photodetectors (PM OPDs) are an attractive strategy for health‐monitoring. Here, PM‐OPDs are reported with a specific detectivity of 5.7 × 1012 Jones and external quantum efficiency values of 3500% under −10 V. The dynamics of carrier trapping in these devices are elucidated through trap selective spectroscopical techniques.
Marie Houot   +9 more
wiley   +1 more source

Tuning the Electronic Structure and Spin State of Fe─N─C Catalysts Using an Axial Oxygen Ligand and Fe Clusters for High‐Efficiency Rechargeable Zinc–Air Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A FeN4─O/Clu@NC‐0.1Ac catalyst containing atomically‐dispersed FeN4─O sites (medium‐spin Fe2+) and Fe clusters delivered a half‐wave potential of 0.89 V for ORR and an overpotential of 330 mV at 10 mA cm−2 for OER in 0.1 m KOH. When the catalyst was used in a rechargeable Zn–air battery, a power density of 284.5 mW cm−2 was achieved with excellent ...
Yongfang Zhou   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy