Median evidential c-means algorithm and its application to community detection [PDF]
Median clustering is of great value for partitioning relational data. In this paper, a new prototype-based clustering method, called Median Evidential C-Means (MECM), which is an extension of median c-means and median fuzzy c-means on the theoretical ...
Liu, Zhun-Ga +3 more
core +4 more sources
Exploring Fuzzy Local Spatial Information Algorithms for Remote Sensing Image Classification
Fuzzy c-means (FCM) and possibilistic c-means (PCM) are two commonly used fuzzy clustering algorithms for extracting land use land cover (LULC) information from satellite images.
Anjali Madhu, Anil Kumar, Peng Jia
doaj +1 more source
TOWARDS FINDING A NEW KERNELIZED FUZZY C-MEANS CLUSTERING ALGORITHM [PDF]
Kernelized Fuzzy C-Means clustering technique is an attempt to improve the performance of the conventional Fuzzy C-Means clustering technique. Recently this technique where a kernel-induced distance function is used as a similarity measure instead ...
Samarjit Das, Hemanta K. Baruah
doaj
Fuzzy C-Means Clustering Using Asymmetric Loss Function
In this work, a fuzzy clustering algorithm is proposed based on the asymmetric loss function instead of the usual symmetric dissimilarities. Linear Exponential (LINEX) loss function is a commonly used asymmetric loss function, which is considered in this
Israa Abdzaid Atiyah +3 more
doaj +1 more source
AN APPROACH TO REMOVE THE EFFECT OF RANDOM INITIALIZATION FROM FUZZY C-MEANS CLUSTERING TECHNIQUE [PDF]
Out of the different available fuzzy clustering techniques Bezdek’s Fuzzy C-Means clustering technique is among the most popular ones. Due to the random initialization of the membership values the performance of Fuzzy C-Means clustering technique ...
Samarjit Das, Hemanta K. Baruah
doaj
Применение методов кластеризации для диагностики болезни Альцгеймера на основе ПЕТ-изображений [PDF]
Робота присвячена використанню методів кластеризації в системах нечіткого виводу для класифікації ПЕТ-зображень з метою діагностики хвороби Альцгеймера. Оцінені характеристики кожного з трьох представлених кластеризаційних методів: Subtractive Clustering,
Gorriz, Huan Manuel +11 more
core +1 more source
A new Semi-Supervised Intuitionistic Fuzzy C-means Clustering [PDF]
Semi-supervised clustering algorithms aim to increase the accuracy of unsupervised clustering process by effectively exploring the limited supervision available in the form of labelled data.
J. Arora, M. Tushir
doaj +1 more source
KC-Means: A Fast Fuzzy Clustering
A novel hybrid clustering method, named KC-Means clustering, is proposed for improving upon the clustering time of the Fuzzy C-Means algorithm. The proposed method combines K-Means and Fuzzy C-Means algorithms into two stages.
Israa Abdzaid Atiyah +2 more
doaj +1 more source
Approximating a similarity matrix by a latent class model: A reappraisal of additive fuzzy clustering [PDF]
Let Q be a given n×n square symmetric matrix of nonnegative elements between 0 and 1, similarities. Fuzzy clustering results in fuzzy assignment of individuals to K clusters.
Bink, M.C.A.M. +3 more
core +2 more sources
Combining Fuzzy C-Means Clustering with Fuzzy Rough Feature Selection
With the rapid development of the network, data fusion becomes an important research hotspot. Large amounts of data need to be preprocessed in data fusion; in practice, the features of datasets can be filtered to reduce the amount of data.
Ruonan Zhao, Lize Gu, Xiaoning Zhu
doaj +1 more source

