Results 21 to 30 of about 112,252 (298)

Median evidential c-means algorithm and its application to community detection [PDF]

open access: yes, 2015
Median clustering is of great value for partitioning relational data. In this paper, a new prototype-based clustering method, called Median Evidential C-Means (MECM), which is an extension of median c-means and median fuzzy c-means on the theoretical ...
Liu, Zhun-Ga   +3 more
core   +4 more sources

Exploring Fuzzy Local Spatial Information Algorithms for Remote Sensing Image Classification

open access: yesRemote Sensing, 2021
Fuzzy c-means (FCM) and possibilistic c-means (PCM) are two commonly used fuzzy clustering algorithms for extracting land use land cover (LULC) information from satellite images.
Anjali Madhu, Anil Kumar, Peng Jia
doaj   +1 more source

TOWARDS FINDING A NEW KERNELIZED FUZZY C-MEANS CLUSTERING ALGORITHM [PDF]

open access: yesJournal of Process Management and New Technologies, 2014
Kernelized Fuzzy C-Means clustering technique is an attempt to improve the performance of the conventional Fuzzy C-Means clustering technique. Recently this technique where a kernel-induced distance function is used as a similarity measure instead ...
Samarjit Das, Hemanta K. Baruah
doaj  

Fuzzy C-Means Clustering Using Asymmetric Loss Function

open access: yesJournal of Statistical Theory and Applications (JSTA), 2020
In this work, a fuzzy clustering algorithm is proposed based on the asymmetric loss function instead of the usual symmetric dissimilarities. Linear Exponential (LINEX) loss function is a commonly used asymmetric loss function, which is considered in this
Israa Abdzaid Atiyah   +3 more
doaj   +1 more source

AN APPROACH TO REMOVE THE EFFECT OF RANDOM INITIALIZATION FROM FUZZY C-MEANS CLUSTERING TECHNIQUE [PDF]

open access: yesJournal of Process Management and New Technologies, 2014
Out of the different available fuzzy clustering techniques Bezdek’s Fuzzy C-Means clustering technique is among the most popular ones. Due to the random initialization of the membership values the performance of Fuzzy C-Means clustering technique ...
Samarjit Das, Hemanta K. Baruah
doaj  

Применение методов кластеризации для диагностики болезни Альцгеймера на основе ПЕТ-изображений [PDF]

open access: yes, 2016
Робота присвячена використанню методів кластеризації в системах нечіткого виводу для класифікації ПЕТ-зображень з метою діагностики хвороби Альцгеймера. Оцінені характеристики кожного з трьох представлених кластеризаційних методів: Subtractive Clustering,
Gorriz, Huan Manuel   +11 more
core   +1 more source

A new Semi-Supervised Intuitionistic Fuzzy C-means Clustering [PDF]

open access: yesEAI Endorsed Transactions on Scalable Information Systems, 2020
Semi-supervised clustering algorithms aim to increase the accuracy of unsupervised clustering process by effectively exploring the limited supervision available in the form of labelled data.
J. Arora, M. Tushir
doaj   +1 more source

KC-Means: A Fast Fuzzy Clustering

open access: yesAdvances in Fuzzy Systems, 2018
A novel hybrid clustering method, named KC-Means clustering, is proposed for improving upon the clustering time of the Fuzzy C-Means algorithm. The proposed method combines K-Means and Fuzzy C-Means algorithms into two stages.
Israa Abdzaid Atiyah   +2 more
doaj   +1 more source

Approximating a similarity matrix by a latent class model: A reappraisal of additive fuzzy clustering [PDF]

open access: yes, 2009
Let Q be a given n×n square symmetric matrix of nonnegative elements between 0 and 1, similarities. Fuzzy clustering results in fuzzy assignment of individuals to K clusters.
Bink, M.C.A.M.   +3 more
core   +2 more sources

Combining Fuzzy C-Means Clustering with Fuzzy Rough Feature Selection

open access: yesApplied Sciences, 2019
With the rapid development of the network, data fusion becomes an important research hotspot. Large amounts of data need to be preprocessed in data fusion; in practice, the features of datasets can be filtered to reduce the amount of data.
Ruonan Zhao, Lize Gu, Xiaoning Zhu
doaj   +1 more source

Home - About - Disclaimer - Privacy