Results 161 to 170 of about 775 (194)
Some of the next articles are maybe not open access.

Duality and Hermitian Galois Module Structure

Proceedings of the London Mathematical Society, 2003
Summary: Suppose \(\mathcal{O}\) is either the ring of integers of a number field, the ring of integers of a \(p\)-adic local field, or a field of characteristic \(0\). Let \(\mathcal{X}\) be a regular projective scheme which is flat and equidimensional over \(\mathcal{O}\) of relative dimension \(d\). Suppose \(G\) is a finite group acting tamely on \(
Chinburg, Ted   +2 more
openaire   +2 more sources

Multiplicative Galois Module Structure

Journal of the London Mathematical Society, 1984
Soit N/K une extension finie galoisienne de corps de nombres de groupe de Galois G. Soit S un ensemble fini de places de N stable par G. On note U le groupe des S-unités de N et X l'ensemble \(\{\) \(\sum_{v\in S}n_ v v\), \(\sum_{v\in S}n_ v=0\}\). En supposant S assez gros, J. Tate a défini une classe canonique \(\alpha\) (N/K,S) dans Ext\({}^ 2_ G\)(
openaire   +1 more source

Exact Sequences and Galois Module Structure

The Annals of Mathematics, 1985
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire   +2 more sources

Galois Theory of Essential Extensions of Modules

Canadian Journal of Mathematics, 1972
The purpose of this paper is to exploit an analogy between algebraic extensions of fields and essential extensions of modules, in which the role of the algebraic closure of a field F is played by the injective hull H(M) of a unitary left R-module M.
openaire   +2 more sources

Frobenius Modules and Galois Groups

2004
In these notes some basic facts on Frobenius modules are collected. Frobenius modules are finite-dimensional vector spaces over fields with a Frobenius endomorphism O, provided with an injective O-semilinear Frobenius operator Ф.
openaire   +1 more source

A new-to-nature carboxylation module to improve natural and synthetic CO2 fixation

Nature Catalysis, 2021
Thomas Beneyton   +2 more
exaly  

Home - About - Disclaimer - Privacy