Results 151 to 160 of about 154,736 (278)

Electrochemical performance of CO2 electrolysis in an electrolyte-supported (NiO-YSZ/NiO-SDC/ScSZ/LSCF-GDC/LSCF) solid oxide electrolysis cell

open access: yesDiscover Electrochemistry
This study investigated the electrochemical performance of CO2 electrolysis in an electrolyte-supported (NiO-YSZ/NiO-SDC/ScSZ/LSCF-GDC/LSCF) SOEC button cell at different temperatures (700, 750, 800, and 850 °C), CO2 gas concentrations (10, 30, and 60%),
Farhan Ottapilakkil   +4 more
doaj   +1 more source

Porous layer modifications of gas-diffusion electrodes

open access: yes, 2012
published_or_final_version ; Chemistry ; Master ; Master of ...
openaire   +2 more sources

Solvent‐Free Bonding Mechanisms and Microstructure Engineering in Dry Electrode Technology for Lithium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Dry electrode technology revolutionizes battery manufacturing by eliminating toxic solvents and energy‐intensive drying. This work details two promising techniques: dry spray deposition and polymer fibrillation. How their unique solvent‐free bonding mechanisms create uniform microstructures for thicker, denser electrodes, boosting energy density and ...
Yuhao Liang   +7 more
wiley   +1 more source

Dual‐Functional Additive Regulating Zn2+ Solvation Structure and (002) Plane‐Oriented Deposition for Dendrite‐Free Zn Anodes

open access: yesAdvanced Functional Materials, EarlyView.
Sulfosalicylic acid (SSA) is introduced as a bifunctional additive for Aqueous zinc‐ion batteries. SSA reconstructs the solvation structure of Zn2+ through the synergistic effects of its multiple functional groups, suppressing side reactions while selectively promoting Zn (002) deposition to prevent dendrite formation.
Le Gao   +8 more
wiley   +1 more source

High‐Yield Synthesis of Fe‐NC Electrocatalysts Using Mg2+ Templating and Schiff‐Base Porous Organic Polymers

open access: yesAdvanced Functional Materials, EarlyView.
Fe─NC porous oxygen reduction electrocatalysts are prepared employing a 2,4,6‐Triaminopyrimidine‐based porous organic polymer, a Mg2+ Lewis acid, and a low‐temperature cation exchange protocol. Using the polymer precursor achieves high pyrolysis yields and results in atomically dispersed FeNx sites. The resulting catalysts feature hierarchical porosity
Eliot Petitdemange   +11 more
wiley   +1 more source

Electrosynthesis of Bioactive Chemicals, From Ions to Pharmaceuticals

open access: yesAdvanced Functional Materials, EarlyView.
This review discusses recent advances in electrosynthesis for biomedical and pharmaceutical applications. It covers key electrochemical materials enabling precise delivery of ions and small molecules for cellular modulation and disease treatment, alongside catalytic systems for pharmaceutical synthesis.
Gwangbin Lee   +4 more
wiley   +1 more source

Tuning the Electronic Structure and Spin State of Fe─N─C Catalysts Using an Axial Oxygen Ligand and Fe Clusters for High‐Efficiency Rechargeable Zinc–Air Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A FeN4─O/Clu@NC‐0.1Ac catalyst containing atomically‐dispersed FeN4─O sites (medium‐spin Fe2+) and Fe clusters delivered a half‐wave potential of 0.89 V for ORR and an overpotential of 330 mV at 10 mA cm−2 for OER in 0.1 m KOH. When the catalyst was used in a rechargeable Zn–air battery, a power density of 284.5 mW cm−2 was achieved with excellent ...
Yongfang Zhou   +8 more
wiley   +1 more source

Powering the Future: A Cobalt‐Based Catalyst for Longer‐Lasting Zinc–Air Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A novel N‐doped graphitic shell‐encapsulated Co catalyst reveals superior bifunctional ORR/OER activity in alkaline media, empowering outstanding liquid and quasi‐solid‐state ZAB activity. The system delivers long‐term durability, a peak power density of 127 mW cm−2 and successfully powers an LED and a mini fan.
Manami Banerjee   +10 more
wiley   +1 more source

Spectrally Tunable 2D Material‐Based Infrared Photodetectors for Intelligent Optoelectronics

open access: yesAdvanced Functional Materials, EarlyView.
Intelligent optoelectronics through spectral engineering of 2D material‐based infrared photodetectors. Abstract The evolution of intelligent optoelectronic systems is driven by artificial intelligence (AI). However, their practical realization hinges on the ability to dynamically capture and process optical signals across a broad infrared (IR) spectrum.
Junheon Ha   +18 more
wiley   +1 more source

Home - About - Disclaimer - Privacy