Results 181 to 190 of about 5,282,959 (357)

CCL5hi Macrophages Interact with CD8+ T Cells and Potentiate Responsiveness to PD‐1 Blockade Plus Chemotherapy in Esophageal Squamous Cell Carcinoma

open access: yesAdvanced Science, EarlyView.
This study has characterized a functionally distinct macrophage subset, termed CCL5hi macrophages, and elucidated the underlying mechanisms of a regulatory feedback loop that interconnects IFN‐γ, CCL5hi macrophages, and CD8+ T cells within the TME of ESCC undergoing immunochemotherapy.
Yuanzhen Ma   +10 more
wiley   +1 more source

Segment Anything Model for Gastric Cancer. [PDF]

open access: yesCancer Med
Li L   +10 more
europepmc   +1 more source

Branched‐Chain α Keto‐Acid Dehydrogenase Kinase‐Mediated AKT Phosphorylation Promotes RCC Tumorigenesis and Drug Resistance

open access: yesAdvanced Science, EarlyView.
This study identifies a novel oncogenic role and a previously unrecognized phosphorylation substrate of BCKDK in RCC, wherein it promotes tumor progression and drug resistance through AKT phosphorylation at both Thr308 and Ser473 sites and activation of AKT/mTOR and AKT/ABCB1 signaling pathways, offering a promising prognostic marker and therapeutic ...
Qin Tian   +18 more
wiley   +1 more source

Gastric Cancer [PDF]

open access: yesCA: A Cancer Journal for Clinicians, 1986
openaire   +2 more sources

Skullcapflavone II Inhibits SLC1A4‐Mediated L‐Serine Uptake and Promotes Mitochondrial Damage in Gastric Cancer

open access: yesAdvanced Science, EarlyView.
Skullcapflavone II (SkII) significantly alters serine metabolism in gastric cancer cells by directly targeting the L‐serine transporter SLC1A4, thereby inhibiting L‐serine uptake rather than de novo synthesis. This disruption of serine metabolism by SkII leads to increased oxidative stress and consequent mitochondrial damage.
Jing Zhao   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy