Results 241 to 250 of about 261,418 (285)

Human Schlafen 14 Cleavage of Short Double‐Stranded RNAs Underpins its Antiviral Activity

open access: yesAdvanced Science, EarlyView.
SLFN14 is associated with human diseases. SLFN14 is found to cleave RNAs containing short duplexes. The cryo‐EM structures of SLFN14 and SLFN14‐hairpin RNA complex reveal that SLFN14 assembles into a ring‐like dimer; two RNase domains form an RNA‐binding groove accommodating a hairpin RNA.
Mengyun Li   +8 more
wiley   +1 more source

Hydrogen‐Producing Catalysts Based on Ferredoxin Scaffolds

open access: yesAdvanced Science, EarlyView.
Selected plant‐type ferredoxins that lack their natural [2Fe‐2S] clusters functionally bind a hydrogenase active site cofactor and act as hydrogenases themselves. In combination with photosystem I, the light‐dependent H₂ evolution almost matches the H₂ production rates of the natural system.
Yiting She   +6 more
wiley   +1 more source

A Complementarity‐Based Approach to De Novo Binder Design

open access: yesAdvanced Science, EarlyView.
A novel method for surface complementarity detection (HECTOR) enables highly efficient docking and design of protein interfaces. Applied to therapeutically relevant targets, this method yields de novo binders with potent antagonistic activity. As a first‐principles approach, HECTOR offers a training‐free solution to the binder design problem and is ...
Kateryna Maksymenko   +17 more
wiley   +1 more source

Bionic Nanostructures Create Mechanical Signals to Mediate the Composite Structural Bone Regeneration Through Multi‐System Regulation

open access: yesAdvanced Science, EarlyView.
Inspired by the structural and functional characteristics of bone, bionic nanomaterials combined with nanotechnology can more accurately replicate stem cell niches, enabling the design of bone tissue engineering scaffolds with diverse nanoscale properties to promote stem cell migration, proliferation, and differentiation. This precise control over stem
Yangfan Pei   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy