Results 281 to 290 of about 969,294 (383)

METABOLIC CONNECTION BETWEEN PROLINE AND GLYCINE IN THE AMINO ACID UTILIZATION OF TORULOPSIS UTILIS

open access: hybrid, 1947
G. Ehrensvärd   +4 more
openalex   +1 more source

Transient Interdomain Interactions Modulate the Monomeric Structural Ensemble and Self‐Assembly of Huntingtin Exon 1

open access: yesAdvanced Science, EarlyView.
Polyglutamine (polyQ) tract expansion (≥ 36 amino acids) within the N‐terminal region of the Huntingtin protein (Httex1) causes Huntington's disease (HD), for which the underlying causes are not well‐understood. The authors performed computer simulations to understand the cause of HD at the molecular level.
Priyesh Mohanty   +2 more
wiley   +1 more source

Simulating metabolic pathways to enhance interpretations of metabolome genome-wide association studies. [PDF]

open access: yesSci Rep
Kodate S   +9 more
europepmc   +1 more source

Glycine release from astrocytes via functional reversal of GlyT1

open access: yesJournal of Neurochemistry, 2017
K. Shibasaki   +4 more
semanticscholar   +1 more source

Testosterone Delays Bone Microstructural Destruction via Osteoblast‐Androgen Receptor‐Mediated Upregulation of Tenascin‐C

open access: yesAdvanced Science, EarlyView.
This study reveals that Testosterone–Androgen Receptor signaling delays elderly male bone destruction by upregulation of the osteoblastic extracellular tenascin‐C (TNC). The osteoprotective effect of fibrinogen C‐terminus of TNC is demonstrated in male osteoporotic mice model that osteoblast‐specific Ar‐knockout, potentially via inhibition of ...
Yong Xie   +8 more
wiley   +1 more source

Dynamic Cap‐Mediated Substrate Access and Potent Inhibitor Design of Monkeypox Virus I7L Protease

open access: yesAdvanced Science, EarlyView.
The first crystal structure of MPXV I7L protease, revealing its unique dimeric form is resolved. The structures and MD simulations uncovered a dynamic cap region that regulates substrate access to the active site. The structural basis of substrate recognition and the catalytic mechanism are elucidated, which led to the development of a FRET‐based assay
Haixia Su   +12 more
wiley   +1 more source

The SlDOF9‐SlSWEET17 Module: a Switch for Controlling Sugar Distribution Between Nematode Induced Galls and Roots in Tomato

open access: yesAdvanced Science, EarlyView.
Root‐knot nematode (RKN) disease seriously affects the yield and quality of vegetable crops. SlDOF9‐SlSWEET17 model helps plants resist RKN infection during early stage by switching off the sugar transport capacity of other SlSWEET proteins that are hijacked by RKNs.
Xiaoyun Wang   +14 more
wiley   +1 more source

Home - About - Disclaimer - Privacy