Results 71 to 80 of about 2,422,838 (348)
On Square Sum Labeling of Two Families of Petersen Graphs
A labeling on a graph G with n vertices and m edges is called square sum if there exists a bijection f:VG⟶0,1,2,3,…,n−1 such that the function f∗:EG⟶N defined by f∗st=fs2+ft2, for all st∈EG, is injective.
Zhiqiang Zhang+3 more
doaj +1 more source
On Integer Cordial Labeling of Some Families of Graphs
An integer cordial labeling of a graph $G(p,q)$ is an injective map $f:V\rightarrow [-\frac{p}{2}...\frac{p}{2}]^*$ or $[-\lfloor{\frac{p}{2}\rfloor}...\lfloor{\frac{p}{2}\rfloor}]$ as $p$ is even or odd, which induces an edge labeling $f^*: E ...
S Sarah Surya, Lian Mathew, Alan Thomas
doaj +1 more source
Weak Set-Labeling Number of Certain IASL-Graphs
Let $\mathbb{N}_0$ be the set of all non-negative integers, let $X\subset \mathbb{N}_0$ and $\mathcal{P}(X)$ be the the power set of $X$. An integer additive set-labeling (IASL) of a graph $G$ is an injective function $f:V(G)\to \mathcal{P}(\mathbb{N}_0)$
Chithra, K. P.+2 more
core +1 more source
RANGE LABELING FOR SOME GRAPHS
In this paper, we focus on one type of labeling is called range labeling, we have introduced range labeling for certain graphs as for Pz, Cz, Sy,z(Double star), sun graph and for some trees.
R. Jahir Hussain, J. Senthamizh Selvan
openaire +2 more sources
PMC-LABELING OF SOME CLASSES OF GRAPHS CONTAINING CYCLES
Let be a graph with p vertices and q edges. We have introduced a new graph labeling method using integers and cordial-related works and investigated some graphs for this labeling technique.
R Ponraj, S Prabhu, M Sivakumar
doaj +1 more source
The inapproximability for the (0,1)-additive number
An {\it additive labeling} of a graph $G$ is a function $ \ell :V(G) \rightarrow\mathbb{N}$, such that for every two adjacent vertices $ v $ and $ u$ of $ G $, $ \sum_{w \sim v}\ell(w)\neq \sum_{w \sim u}\ell(w) $ ($ x \sim y $ means that $ x $ is ...
Ahadi, Arash, Dehghan, Ali
core +2 more sources
A Study on Integer Additive Set-Valuations of Signed Graphs [PDF]
Let $\N$ denote the set of all non-negative integers and $\cP(\N)$ be its power set. An integer additive set-labeling (IASL) of a graph $G$ is an injective set-valued function $f:V(G)\to \cP(\N)-\{\emptyset\}$ such that the induced function $f^+:E(G) \to
Germina, K. A., Sudev, N. K.
core +4 more sources
A graceful labeling of a graph $G$ with $m$ edges consists of labeling the vertices of $G$ with distinct integers from $0$ to $m$ such that, when each edge is assigned as induced label the absolute difference of the labels of its endpoints, all induced ...
Dantas, Simone+2 more
core +2 more sources
We show that if a graph \(G\) on \(n\) edges allows certain special type of rosy labeling (a.k.a. \(\rho\)-labeling), called \(\alpha_2\)-labeling, then for any positive integer \(k\) the complete graph \(K_{2nk+1}\) can be decomposed into copies of \(G\). This notion generalizes the \(\alpha\)-labeling introduced in 1967 by A. Rosa.
openaire +1 more source
Note on edge irregular reflexive labelings of graphs
For a graph , an edge labeling and a vertex labeling are called total -labeling, where . The total -labeling is called an edge irregular reflexive -labeling of the graph , if for every two different edges and of , one has The minimum for which the graph ...
Martin Bača+4 more
doaj +1 more source