Results 51 to 60 of about 15,069 (140)
New opportunities for creating quantum states of light and matter with intense laser fields
Abstract Nonlinear dynamics provide an indispensable resource for creating quantum states of light, as well as other bosonic systems. Seminal work using second‐ and third‐order nonlinear optical crystals, cavity quantum electrodynamics, and superconducting circuits, have enabled generating squeezed states, as well as various non‐Gaussian quantum states
Nicholas Rivera
wiley +1 more source
We investigate the Gross-Pitaevskii equation for a Bose-Einstein condensate in a PT symmetric double-well potential by means of the time-dependent variational principle and numerically exact solutions.
Holger Cartarius +5 more
doaj
Dynamical behaviour and solutions in the fractional Gross–Pitaevskii model
The Gross–Pitaevskii equation is widely known for its applications in fields such as Bose–Einstein condensates and optical fibres. This study investigates the dynamical behaviour of various wave solutions to the M-fractional nonlinear Gross–Pitaevskii ...
Beenish +3 more
doaj +1 more source
An Efficient Compact Finite Difference Method for the Solution of the Gross-Pitaevskii Equation
We present an efficient, unconditionally stable, and accurate numerical method for the solution of the Gross-Pitaevskii equation. We begin with an introduction on the gradient flow with discrete normalization (GFDN) for computing stationary states of a ...
Rongpei Zhang, Jia Liu, Guozhong Zhao
doaj +1 more source
We give here the derivation of a Gross-Pitaevskii--type equation for inhomogeneous condensed bosons. Instead of the original Gross-Pitaevskii differential equation, we obtain an integral equation that implies less restrictive assumptions than are made in
A. J. Leggett +9 more
core +1 more source
Optical control of topological end states via soliton formation in a 1D lattice
Abstract Discrete spatial solitons are self‐consistent solutions of the discrete nonlinear Schrödinger equation that maintain their shape during propagation. Here we show, using a pump‐probe technique, that soliton formation can be used to optically induce and control a linear topological end state in the bulk of a Su–Schrieffer–Heeger lattice, using ...
Christina Jörg +3 more
wiley +1 more source
Dynamical Symmetry and Breathers in a Two-Dimensional Bose Gas
A fluid is said to be scale invariant when its interaction and kinetic energies have the same scaling in a dilation operation. In association with the more general conformal invariance, scale invariance provides a dynamical symmetry which has profound ...
R. Saint-Jalm +7 more
doaj +1 more source
STABILITY OF BOSE-EINSTEIN CONDENSATES IN A PT-SYMMETRIC DOUBLE-δ POTENTIAL CLOSE TO BRANCH POINTS
A Bose-Einstein condensate trapped in a double-well potential, where atoms are incoupled to one side and extracted from the other, can in the mean-field limit be described by the nonlinear Gross-Pitaevskii equation (GPE) with a PT symmetric external ...
Andreas Löhle +5 more
doaj +1 more source
The inverse problem for the Gross - Pitaevskii equation [PDF]
Two different methods are proposed for the generation of wide classes of exact solutions to the stationary Gross - Pitaevskii equation (GPE). The first method, suggested by the work by Kondrat'ev and Miller (1966), applies to one-dimensional (1D) GPE. It
Boris A. Malomed +6 more
core +2 more sources
A New Thermodynamic Approach to Multimode Fiber Self‐cleaning and Soliton Condensation
A new thermodynamic theory for optical multimode systems is presented, based on a weighted Bose–Einstein law (wBE) and including a state equation, fundamental equation for the entropy and an accuracy metric. An experimental comparison of two propagation regimes of a multimode optical fiber is carried out in terms of wBE, namely the self‐cleaning in the
Mario Zitelli
wiley +1 more source

