Results 281 to 290 of about 10,050,077 (365)

Removing Homocoupling Defects in Alkoxy/Alkyl‐PBTTT Enhances Polymer:Fullerene Co‐Crystal Formation and Stability

open access: yesAdvanced Functional Materials, EarlyView.
PBTTT‐OR‐R, a C14‐alkoxy/alkyl‐PBTTT polymer derivative, is of substantial interest for optoelectronics due to its specific fullerene intercalation behavior and enhanced charge‐transfer absorption. Comparing this polymer with (S) and without (O) homocoupling defects reveals that PBTTT‐OR‐R(O) forms stable co‐crystals with PC61BM, while PBTTT‐OR‐R(S ...
Zhen Liu   +14 more
wiley   +1 more source

Severe neurocognitive and growth disorders due to variation in THOC2, an essential component of nuclear mRNA export machinery. [PDF]

open access: yesHum Mutat, 2018
Kumar R   +31 more
europepmc   +1 more source

Exploring Dipolar Dynamics and Ionic Transport in Metal‐Organic Frameworks: Experimental and Theoretical Insights

open access: yesAdvanced Functional Materials, EarlyView.
In this study, the interplay of dipolar dynamics and ionic charge transport in MOF compounds is investigated. Synthesizing the novel structure CFA‐25 with integrated freely rotating dipolar groups, local and macroscopic effects, including interactions with Cs cations are explored.
Ralph Freund   +6 more
wiley   +1 more source

Achieving Large and Anisotropic Spin‐Mediated Thermal Transport in Textured Quantum Magnets

open access: yesAdvanced Functional Materials, Volume 35, Issue 12, March 18, 2025.
An advanced solvent‐cast cold pressing method is developed to synthesize highly textured quantum magnets. By aligning spin chains in Ca2CuO3 perpendicular to the pressing direction, a spin‐mediated thermal conductivity of 10 ± 1 W m⁻¹ K⁻¹ is achieved, the highest reported for polycrystalline quantum materials.
Shucheng Guo   +6 more
wiley   +1 more source

Chemically Processed Porous V2O5 Thin‐Film Cathodes for High‐Performance Thin‐film Zn‐Ion Batteries

open access: yesAdvanced Functional Materials, Volume 35, Issue 12, March 18, 2025.
This study presents a rapid, cost‐effective chemical method for fabricating porous vanadium oxide thin‐film cathodes, aimed at enhancing charge storage in Zinc‐ion thin‐film batteries. The approach promises high‐performance, safe, and affordable thin‐film batteries, with industrial viability through efficient processing of highly porous cathodes ...
Jingli Luo   +9 more
wiley   +1 more source

Ultrahigh Piezoelectricity in Truss‐Based Ferroelectric Ceramics Metamaterials

open access: yesAdvanced Functional Materials, Volume 35, Issue 12, March 18, 2025.
By leveraging the unique combination of polarization direction and loading state, ultrahigh piezoelectricity is achieved through careful tuning of the relative density and scaling ratio in truss‐based ferroelectric metamaterials. This approach enables the simultaneous realization of extremely high piezoelectric constants and ultralow dielectric ...
Jiahao Shi   +6 more
wiley   +1 more source

Universal Superconductivity in FeTe and All‐Iron‐Based Ferromagnetic Superconductor Heterostructures

open access: yesAdvanced Functional Materials, EarlyView.
The first all‐iron‐based ferromagnetic superconductor heterostructures with high‐temperature superconductivity and strong ferromagnetism aredemonstrated. From this, it is discovered that FeTe becomes universallysuperconducting with a minute level of cationic impurities through doping ordiffusion from neighboring layers, suggesting its ground state can ...
Hee Taek Yi   +12 more
wiley   +1 more source

Dynamic Micromechanical Characterization of 3D Printed Bone In Vitro Models Manufactured via Vat Photopolymerization

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a novel approach to designing and fabricating high‐porosity 3D‐printed scaffolds using a customized resin. Scaffold geometry, cellular interactions, and mechanical properties are analyzed to demonstrate these engineered bone models.
Sera Choi   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy