Results 171 to 180 of about 448,670 (343)

Cinnamic‐Hydroxamic‐Acid Derivatives Exhibit Antibiotic, Anti‐Biofilm, and Supercoiling Relaxation Properties by Targeting Bacterial Nucleoid‐Associated Protein HU

open access: yesAdvanced Science, EarlyView.
Cinnamic‐hydroxamic‐acid derivatives (CHADs) are identified as novel inhibitors of the bacterial nucleoid‐associated protein HU, exhibiting potent antibacterial, anti‐biofilm (both inhibition and eradication), and DNA relaxation (anti‐supercoiling) activities. Moreover, CHADs demonstrate strong synergistic effects with multiple antibiotics.
Huan Chen   +22 more
wiley   +1 more source

Wearable and Implantable Devices for Continuous Monitoring of Muscle Physiological Activity: A Review

open access: yesAdvanced Science, EarlyView.
Recent advances in materials and device engineering enable continuous, real‐time monitoring of muscle activity via wearable and implantable systems. This review critically summarizes emerging technologies for tracking electrophysiological, biomechanical, and oxygenation signals, outlines fundamental principles, and highlights key challenges and ...
Zhengwei Liao   +4 more
wiley   +1 more source

Comprehensive Profiling of N6‐methyladnosine (m6A) Readouts Reveals Novel m6A Readers That Regulate Human Embryonic Stem Cell Differentiation

open access: yesAdvanced Science, EarlyView.
This research deciphers the m6A transcriptome by profiling its sites and functional readout effects: from mRNA stability, translation to alternative splicing, across five different cell types. Machine learning model identifies novel m6A‐binding proteins DDX6 and FXR2 and novel m6A reader proteins FUBP3 and L1TD1.
Zhou Huang   +11 more
wiley   +1 more source

Heat Stress Modulates WDR5‐Mediated H3K4me3 Modification to Induce Melanogenesis via Activating CX3CL1/CX3CR1 Axis

open access: yesAdvanced Science, EarlyView.
This study elucidates the mechanism by which heat stress regulates skin pigmentation: heat stress upregulates CX3CL1 through the MYC‐WDR5‐H3K4me3 axis, thereby activating the CX3CL1/CX3CR1‐JNK signaling pathway and ultimately promoting melanogenesis. These findings provide novel potential therapeutic targets for pigmentary skin disorders.
Yushan Zhang   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy