Results 101 to 110 of about 836,616 (347)

Peptide Sequencing With Single Acid Resolution Using a Sub‐Nanometer Diameter Pore

open access: yesAdvanced Functional Materials, EarlyView.
To sequence a single molecule of Aβ1−42–sodium dodecyl sulfate (SDS), the aggregate is forced through a sub‐nanopore 0.4 nm in diameter spanning a 4.0 nm thick membrane. The figure is a visual molecular dynamics (VMD) snapshot depicting the translocation of Aβ1−42–SDS through the pore; only the peptide, the SDS, the Na+ (yellow/green) and Cl− (cyan ...
Apurba Paul   +8 more
wiley   +1 more source

Transmission Disrupted: Modeling Auditory Synaptopathy in Zebrafish

open access: yesFrontiers in Cell and Developmental Biology, 2018
Sensorineural hearing loss is the most common form of hearing loss in humans, and results from either dysfunction in hair cells, the sensory receptors of sound, or the neurons that innervate hair cells.
Katie S. Kindt, Lavinia Sheets
doaj   +1 more source

High‐Yield Synthesis of Fe‐NC Electrocatalysts Using Mg2+ Templating and Schiff‐Base Porous Organic Polymers

open access: yesAdvanced Functional Materials, EarlyView.
Fe─NC porous oxygen reduction electrocatalysts are prepared employing a 2,4,6‐Triaminopyrimidine‐based porous organic polymer, a Mg2+ Lewis acid, and a low‐temperature cation exchange protocol. Using the polymer precursor achieves high pyrolysis yields and results in atomically dispersed FeNx sites. The resulting catalysts feature hierarchical porosity
Eliot Petitdemange   +11 more
wiley   +1 more source

Hair loss therapies: a review and comparison of traditional and modern treatment methods

open access: yesJournal of Education, Health and Sport
Introduction and objective. Hair loss is a common health issue that significantly impacts the quality of life and well-being of millions of people worldwide.
Wiktoria Pawlik   +5 more
doaj   +1 more source

Endothelial Cells Angiogenesis in Sulfated Glycosaminoglycan (GAG) Hydrogels Enhanced by Bioactive Glass‐Released Ions

open access: yesAdvanced Functional Materials, EarlyView.
A mechanically tunable hydrogel composed of gelatin, chondroitin sulfate and laminin promotes angiogenesis in vitro without the supplement of growth factors. Endothelial cells morphogenesis was further enhanced by medium conditioned with bioactive glass 58S‐released ions (Ca and Si), thus offering a promising strategy to vascularize 3D tissue ...
Marco Piazzoni   +13 more
wiley   +1 more source

Shape‐Morphing Nanoengineered Hydrogel Ribbons as Hemostats

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a self‐assembling, shape‐morphing nanoengineered hydrogel ribbon system that rapidly forms porous aggregates in situ for efficient hemostasis in trauma and surgical applications. Abstract Rapid and effective hemorrhage control remains a major challenge in trauma and surgical care, particularly for complex or noncompressible wounds.
Ryan Davis Jr   +9 more
wiley   +1 more source

Noise-induced and age-related hearing loss:  new perspectives and potential therapies [version 1; referees: 4 approved]

open access: yesF1000Research, 2017
The classic view of sensorineural hearing loss has been that the primary damage targets are hair cells and that auditory nerve loss is typically secondary to hair cell degeneration. Recent work has challenged that view.
M Charles Liberman
doaj   +1 more source

Dual‐Interface Engineering of the Source Electrode to Overcome the Intrinsic Injection‐Leakage Trade‐Off in Organic Schottky Barrier Transistors

open access: yesAdvanced Functional Materials, EarlyView.
A charge injection layer is introduced via RIE to decouple the dual functions of the source electrode: lowering contact resistance through doping to enhance charge injection, while SAM modification on the top surface minimizes leakage current. This strategy enables OSBTs to achieve a high on/off ratio with improved stability and performance.
Hye Ryun Sim   +6 more
wiley   +1 more source

Hair Loss [PDF]

open access: yesPharmacy Today, 2021
openaire   +2 more sources

Home - About - Disclaimer - Privacy