Results 61 to 70 of about 1,288,266 (300)
Synchrotron Radiation for Quantum Technology
Materials and interfaces underpin quantum technologies, with synchrotron and FEL methods key to understanding and optimizing them. Advances span superconducting and semiconducting qubits, 2D materials, and topological systems, where strain, defects, and interfaces govern performance.
Oliver Rader +10 more
wiley +1 more source
The zigzag graphene nanoribbon (ZR) is characterized by the distinct pseudoparity combined with valley-selection rule, which could feature exotic transport phenomena, especially in ZR-based superconducting spintronic devices.
Mengyao Li +5 more
doaj +1 more source
Three-point density correlation functions in the fractional quantum Hall regime
In this paper we consider the three-particle density correlation function for a fractional quantum Hall liquid. The study of this object is motivated by recent experimental studies of fractional quantum Hall systems using inelastic light scattering and ...
Gradsteyn I S +4 more
core +2 more sources
From a database of 170 pentagonal 2D materials, 4 candidates exhibiting altermagnetic ordering are screened. Furthermore, the spin‐splitting and unconventional boundary states in the pentagonal 2D altermagnetic monolayer MnS2 are investigated. A MnS2‐based altermagnetic tunneling junction is designed and, through ab initio quantum transport simulations,
Jianhua Wang +8 more
wiley +1 more source
The Quantum Hall Effect in Graphene: Emergent Modular Symmetry and the Semi-circle Law [PDF]
Low-energy transport measurements in Quantum Hall systems have been argued to be governed by emergent modular symmetries whose predictions are robust against many of the detailed microscopic dynamics.
Burgess, C. P., Dolan, B. P.
core +3 more sources
Low‐Symmetry Weyl Semimetals: A Path to Ideal Topological States
This study presents a theoretical framework for realizing ideal Weyl semimetals, where Weyl nodes are well‐isolated at the Fermi level. The approach is exemplified in the low‐symmetry material Cu2SnSe3, which exhibits tunable topological phases, current‐induced orbital magnetization, and a strong circular photogalvanic effect, making it a promising ...
Darius‐Alexandru Deaconu +3 more
wiley +1 more source
Fractional topological states of dipolar fermions in one-dimensional optical superlattices
We study the properties of dipolar fermions trapped in one-dimensional bichromatic optical lattices and show the existence of fractional topological states in the presence of strong dipole-dipole interactions. We find some interesting connections between
Chen, Shu, Li, Linhu, Xu, Zhihao
core +1 more source
Decomposition of fractional quantum Hall model states: Product rule symmetries and approximations
We provide a detailed description of a product rule structure of the monomial (Slater) expansion coefficients of bosonic (fermionic) fractional quantum Hall (FQH) states derived recently, which we now extend to spin-singlet states. We show that the Haldane-Rezayi spin-singlet state can be obtained without exact diagonalization through a differential ...
Thomale, R. +3 more
openaire +3 more sources
Large Anomalous and Topological Hall Effect and Nernst Effect in a Dirac Kagome Magnet Fe3Ge
Fe3Ge, a Kagome‐lattice magnet, exhibits remarkable anomalous Hall and Nernst effects, with transverse thermoelectric conductivity surpassing or comaprable to some well‐known ferromagnets. First‐principles calculations attribute these to Berry curvature from massive Dirac gaps. Additionally, topological Hall and Nernst signals emerge from field‐induced
Chunqiang Xu +11 more
wiley +1 more source
Variable range hopping in TiO2 insulating layers for oxide electronic devices
TiO2 thin films are of importance in oxide electronics, e.g., Pt/TiO2/Pt for memristors and Co-TiO2/TiO2/Co-TiO2 for spin tunneling devices. When such structures are deposited at a variety of oxygen pressures, how does TiO2 behave as an insulator?
Y. L. Zhao +8 more
doaj +1 more source

