Results 101 to 110 of about 1,194,003 (337)

High Entropy Wide‐Bandgap Borates with Broadband Luminescence and Large Nonlinear Optical properties

open access: yesAdvanced Functional Materials, EarlyView.
High‐entropy rare‐earth borates exhibit excellent nonlinear optical and broadband luminescence properties arising from multi‐component doping, chemical disorder, increased configurational entropy, and increased lattice and electronic anharmonicity. This formulation enabled us to obtain a large, environmentally stable single crystal with 3X higher laser‐
Saugata Sarker   +14 more
wiley   +1 more source

Crystal structure and halogen–hydrogen bonding of a Delépine reaction intermediate [PDF]

open access: gold, 2020
David Z. T. Mulrooney   +2 more
openalex   +1 more source

Role of Halogen Substituents on Halogen Bonding in 4,5-DiBromohexahydro-3a,6-Epoxyisoindol-1(4H)-ones [PDF]

open access: gold, 2021
Atash V. Gurbanov   +9 more
openalex   +1 more source

Pioneering the Future: Principles, Advances, and Challenges in Organic Electrodes for Aqueous Ammonium‐Ion Batteries

open access: yesAdvanced Materials, Volume 37, Issue 13, April 2, 2025.
Leveraging the numerous advantages of ammonium‐ion (NH₄⁺)—including cost‐effectiveness, low corrosiveness, preferential orientation, and rapid diffusion kinetics—aqueous NH₄⁺ batteries (AAIBs) have gained significant attention. This review highlights and evaluates the progress of AAIBs utilizing organic electrode materials such as small molecules ...
Mangmang Shi, Xiaoyan Zhang
wiley   +1 more source

Halogen bond triggered aggregation induced emission in an iodinated cyanine dye for ultra sensitive detection of Ag nanoparticles in tap water and agricultural wastewater

open access: yesRSC Advances, 2018
Aggregation induced emission (AIE) has emerged as a powerful method for sensing applications. Based on AIE triggered by halogen bond (XB) formation, an ultrasensitive and selective sensor for picomolar detection of Ag nanoparticles (Ag NPs) is reported ...
Mostafa F. Abdelbar   +5 more
semanticscholar   +1 more source

Evidence for Interfacial Halogen Bonding

open access: yesAngewandte Chemie International Edition, 2016
AbstractA homologous series of donor–π–acceptor dyes was synthesized, differing only in the identity of the halogen substituents about the triphenylamine (TPA; donor) portion of each molecule. Each Dye‐X (X=F, Cl, Br, and I) was immobilized on a TiO2 surface to investigate how the halogen substituents affect the reaction between the light‐induced ...
Wesley B, Swords   +7 more
openaire   +4 more sources

Dimensionally Resolved Nanostructures of an Atomically Precise and Optically Active 1D van der Waals Helix

open access: yesAdvanced Materials, EarlyView.
The ability to grow nanostructures based on inorganic helical crystals with long‐range order will enable a platform to realize physical states that arise from chirality. Herein, it is demonstrated that controlled vapor phase deposition of an atomically precise helical crystal, GaSI, into ultrathin 1D nanowires and quasi‐2D nanoribbons.
Kaitlyn G. Dold   +15 more
wiley   +1 more source

A halogen bond-mediated highly active artificial chloride channel with high anticancer activity

open access: yesChemical Science, 2018
Modularly tunable monopeptidic scaffold enables rapid and combinatorial evolution of a halogen bond-mediated highly active chloride channel, exhibiting an excellent anticancer activity toward human breast cancer.
Changliang Ren   +9 more
semanticscholar   +1 more source

Kelvin Probe Force Microscopy in Bionanotechnology: Current Advances and Future Perspectives

open access: yesAdvanced Materials, EarlyView.
Kelvin probe force microscopy (KPFM) enables the nanoscale mapping of electrostatic surface potentials. While widely applied in materials science, its use in biological systems remains emerging. This review presents recent advances in KPFM applied to biological samples and provides a critical perspective on current limitations and future directions for
Ehsan Rahimi   +4 more
wiley   +1 more source

Molecular Surface Engineering of Sulfide Electrolytes with Enhanced Humidity Tolerance for Robust Lithium Metal All‐Solid‐State Batteries

open access: yesAdvanced Materials, EarlyView.
It is demonstrated that the electrochemical, interfacial, and humidity stability of halide‐doped sulfide electrolytes (LPSClBr) is significantly enhanced by an organic surface coating using octadecyl phosphonic acid (OPA) and its lithiated form (Li‐OPA). This single‐step strategy enables robust interfacial protection, supports lithium metal anodes, and
Laras Fadillah   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy