Results 41 to 50 of about 3,567,425 (361)
On Degree Sequences Forcing The Square of a Hamilton Cycle [PDF]
A famous conjecture of P\'osa from 1962 asserts that every graph on $n$ vertices and with minimum degree at least $2n/3$ contains the square of a Hamilton cycle. The conjecture was proven for large graphs in 1996 by Koml\'os, S\'ark\"ozy and Szemer\'edi.
Katherine Staden, Andrew Treglown
semanticscholar +1 more source
On Hamilton decompositions of infinite circulant graphs [PDF]
The natural infinite analogue of a (finite) Hamilton cycle is a two-way-infinite Hamilton path (connected spanning 2-valent subgraph). Although it is known that every connected 2k-valent infinite circulant graph has a two-way-infinite Hamilton path ...
Bryant, Darryn +3 more
core +2 more sources
A Note Concerning Hamilton Cycles in Some Classes of Grid Graphs
A graph G is called hamiltonian if it contains a Hamilton cycle, i.e. a cycle containing all vertices. Deciding whether a given graph has a Hamilton cycle is an NP-complete problem. But, it is a polynomial problem within some special graph classes.
A. N.M. Salman +2 more
doaj +1 more source
Difference divisor graph of the finite group [PDF]
Let (Zn, +) be a finite group of integers modulo n and Dn a non-empty subset of Zn containing proper devisors of n. In this paper, we have introduced the difference divisor graph Diff (Zn, Dn) associated with Zn whose vertices coincide with Zn such that ...
R. V M S S Kiran Kumar, T. Chalapathi
doaj +1 more source
On prisms, M\"obius ladders and the cycle space of dense graphs [PDF]
For a graph X, let f_0(X) denote its number of vertices, d(X) its minimum degree and Z_1(X;Z/2) its cycle space in the standard graph-theoretical sense (i.e.
Abdollahi +56 more
core +1 more source
Counting Hamilton cycles in Dirac hypergraphs [PDF]
AbstractA tight Hamilton cycle in a k-uniform hypergraph (k-graph) G is a cyclic ordering of the vertices of G such that every set of k consecutive vertices in the ordering forms an edge. Rödl, Ruciński and Szemerédi proved that for $k\ge 3$ , every k-graph on n vertices with minimum codegree at least $n/2+o(n)$ contains a tight Hamilton cycle.
Glock, Stefan +4 more
openaire +4 more sources
Families of triples with high minimum degree are hamiltonian
In this paper we show that every family of triples, that is, a 3-uniform hypergraph, with minimum degree at least contains a tight Hamiltonian ...
Rödl Vojtech, Ruciński Andrzej
doaj +1 more source
Trends, Cycles and Seasonal Variations of Ukrainian Gross Domestic Product [PDF]
The article attempts to study trends, seasonal variations and cyclical fluctuations of Ukraine’s quarterly GDP at current prices. The period of the study is from the first quarter of 2010 to the first quarter of 2020.
Debesh Bhowmik
doaj +1 more source
Hamilton cycles in dense vertex-transitive graphs [PDF]
A famous conjecture of Lov\'asz states that every connected vertex-transitive graph contains a Hamilton path. In this article we confirm the conjecture in the case that the graph is dense and sufficiently large.
Alon +28 more
core +2 more sources
Hamilton Cycles in Double Generalized Petersen Graphs
Coxeter referred to generalizing the Petersen graph. Zhou and Feng modified the graphs and introduced the double generalized Petersen graphs (DGPGs). Kutnar and Petecki proved that DGPGs are Hamiltonian in special cases and conjectured that all DGPGs are
Sakamoto Yutaro
doaj +1 more source

