Results 191 to 200 of about 922,585 (380)
Prestraining the substrate influences coating formation process. Higher prestraining force leads to higher coating thickness and lower hardness. Increase in prestraining force enhances preliminary damage in hard anodic coating. Fatigue damage mechanisms change for hard anodized prestrained samples.
Linto George Thomas+4 more
wiley +1 more source
Mesoporous Silica Microspheres by Super‐Fast Alkaline Etching of Micrometer‐Sized Stöber Particles
Microscale silica particles are prepared along with a modified, scalable Stöber synthesis using the continuous addition of tetraethoxy silane to an ethanolic solution of ammonia with KCl. Etching with hydroxide ions at 95 °C gave porous analogs within minutes. Monodisperse particles are isolable in high yield after precipitation in ethanol.
Adrian Vaghar+2 more
wiley +1 more source
Dislocation‐Mediated Thermoelectric Performance and Mechanical Behavior
Dislocations can scatter phonons to reduce thermal conductivity, thereby enhance thermoelectric performance. However, dislocations also impact mechanical properties, leading to increased brittleness and altered plasticity. It is essential to clarify the complex relationship between dislocations, thermal transport, and mechanical stability to achieve a ...
Bangzhi Ge, Yuan Yu, Chongjian Zhou
wiley +1 more source
Powder Metallurgy Preparation of Metastable β Ti–Cr–Ge Alloys for Medical Applications
This study develops metastable β Ti–Cr–Ge alloys using powder metallurgy for biomedical implants. The Ti–10Cr–2Ge alloy exhibits superior mechanical performance with high yield strength (>1100 MPa), low Young's modulus (<85 GPa), and excellent strain hardening behavior.
Teddy Sjafrizal+3 more
wiley +1 more source
Effect of hardness matching of aero spline sub-materials on wear performance. [PDF]
He X+5 more
europepmc +1 more source
This study explores combining two existing aerospace titanium alloy powders, processing them via field‐assisted sintering technology and the subsequent discovery of a novel alloy composition, termed S23, with ultra‐high tensile toughness. Fine‐scale alpha precipitates favorably form in the alloy despite the relatively slow cooling, providing an ...
Samuel Lister+2 more
wiley +1 more source
The utilization of direct energy deposition (DED)‐arc additive manufacturing processes in industrial applications is increasing, and these processes have the potential for multi‐material applications. This work provides a overview of the state of research in DED‐arc made functional graded structures, to establish a link to potential industrial ...
Kai Treutler, Volker Wesling
wiley +1 more source
High‐performance nickel‐based superalloys are often not processible in additive manufacturing (AM) due to hot cracking. The findings in this manuscript propose an efficient method to mitigate cracking and enhance mechanical properties of these alloys by producing a metal matrix composite, contributing to the material and process perspective of the AM ...
Klaus Büßenschütt+3 more
wiley +1 more source