Results 231 to 240 of about 487,024 (342)

Laser‐Induced Graphene from Waste Almond Shells

open access: yesAdvanced Functional Materials, EarlyView.
Almond shells, an abundant agricultural by‐product, are repurposed to create a fully bioderived almond shell/chitosan composite (ASC) degradable in soil. ASC is converted into laser‐induced graphene (LIG) by laser scribing and proposed as a substrate for transient electronics.
Yulia Steksova   +9 more
wiley   +1 more source

Highly Sensitive Electrochemical Biosensor Based on Hairy Particles with Controllable High Enzyme Loading and Activity

open access: yesAdvanced Functional Materials, EarlyView.
For the first time, a highly sensitive electrochemical biosensor based on SiO2‐based hairy particles with a grafted PDMAEMA polymer brush containing a quantifiable and large amount of immobilized Laccase is reported. The fabricated biosensor exhibits a sensitivity of 0.14 A·m⁻¹, a limit of detection (LOD) of 0.1 µm, and a detection range of 0.3–750 µm,
Pavel Milkin   +7 more
wiley   +1 more source

Understanding Postdeposition Treatments of Hole‐Transporting Self‐Assembling Molecules for Perovskite/Silicon Tandem Solar Cells

open access: yesAdvanced Functional Materials, EarlyView.
The influence of postdeposition treatments on the formation of self‐assembling (mono)layers commonly utilized as hole transport layers in perovskite‐based solar cells is thoroughly investigated. The implementation of a washing step and an annealing step at temperatures exceeding the current literature standards leads to an enhanced layer quality and ...
Jann B. Landgraf   +14 more
wiley   +1 more source

Fluorophobic Effect Enables Selective Detection of PFAS in Water with Electrolyte‐Gated Organic Transistors

open access: yesAdvanced Functional Materials, EarlyView.
PerFluoroAlkyl Substances (PFAS) are responsible of major and persistent environmental pollution worldwide. This work demonstrates an ultra‐sensitive sensor for PFAS based on an organic transistor whose gate is functionalized with a binary self‐assembled monolayer containing a perfluorinated molecule.
Rian Zanotti   +8 more
wiley   +1 more source

Quasi‐Periodic Surface Functionalization by Ultra‐Short Pulsed Laser Processing: Unlocking Superior Heat Transfer in Vapor Chambers

open access: yesAdvanced Functional Materials, EarlyView.
Ultra‐short pulsed laser processing (ULSP) enables scalable, open‐air fabrication of self‐organized, quasi‐periodic micro/nanostructures on copper using 100 µm laser beams, orders of magnitude larger than the resulting surface features. Integrated into ultra‐thin, wick‐free vapor chambers, these laser‐functionalized surfaces dramatically enhance ...
Anish Pal   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy