Results 61 to 70 of about 4,997 (220)
In the paper, the authors establish some new Hermite–Hadamard type inequalities for harmonically convex functions via generalized fractional integrals.
Xue-Xiao You+4 more
doaj +1 more source
Ostrowski type inequalities for harmonically s-convex functions [PDF]
The author introduces the concept of harmonically s-convex functions and establishes some Ostrowski type inequalities and Hermite-Hadamard type inequality of these classes of functions.Comment: 11 ...
Iscan, Imdat
core
On multiparametrized integral inequalities via generalized α‐convexity on fractal set
This article explores integral inequalities within the framework of local fractional calculus, focusing on the class of generalized α$$ \alpha $$‐convex functions. It introduces a novel extension of the Hermite‐Hadamard inequality and derives numerous fractal inequalities through a novel multiparameterized identity.
Hongyan Xu+4 more
wiley +1 more source
In this paper, we give and study the concept of n-polynomial ( s , m ) $(s,m)$ -exponential-type convex functions and some of their algebraic properties. We prove new generalization of Hermite–Hadamard-type inequality for the n-polynomial ( s , m ) $(s,m)
Saad Ihsan Butt+5 more
doaj +1 more source
Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions
The purpose of this study is to introduce the new class of Hermite–Hadamard inequality for LR-convex interval-valued functions known as LR-interval Hermite–Hadamard inequality, by means of pseudo-order relation ( ≤p ).
Muhammad Bilal Khan+4 more
doaj +1 more source
Extensions of Simpson’s Inequality via Nonnegative Weight Functions and Fractional Operators
In this paper, we present a new version of Simpson‐type inequalities for differentiable functions defined on a subinterval of the positive real axis. The approach involves a nonnegative integrable weight function and provides an identity that refines the classical Simpson inequality by incorporating the first derivative of the function. A key aspect of
Hasan Öğünmez+2 more
wiley +1 more source
Hermite-Hadamard type inequalities for p-convex functions via fractional integrals
In this paper, we present Hermite-Hadamard inequality for p-convex functions in fractional integral forms. we obtain an integral equality and some Hermite-Hadamard type integral inequalities for p-convex functions in fractional integral forms.
Kunt Mehmet, İşcan İmdat
doaj +1 more source
On some integral inequalities for s-geometrically convex functions and their applications [PDF]
In this paper, we establish three inequalities for differentiable s-geometrically and geometrically convex functions which are connected with the famous Hermite-Hadamard inequality holding for convex functions.
Tunc, Mevlut
core
The connection between generalized convexity and analytic operators is deeply rooted in functional analysis and operator theory. To put the ideas of preinvexity and convexity even closer together, we might state that preinvex functions are extensions of convex functions. Integral inequalities are developed using different types of order relations, each
Zareen A. Khan+2 more
wiley +1 more source
A Generalised Trapezoid Type Inequality for Convex Functions [PDF]
A generalised trapezoid inequality for convex functions and applications for quadrature rules are given. A refinement and a counterpart result for the Hermite-Hadamard inequalities are obtained and some inequalities for pdf's and (HH)-divergence measure ...
Dragomir, Sever Silvestru
core +2 more sources