Results 81 to 90 of about 5,151 (220)
Multiplicative Harmonic P‐Functions With Some Related Inequalities
This manuscript includes the investigation of the idea of a multiplicative harmonic P‐function and construction of the Hermite–Hadamard inequality for such a sort of functions. We also establish several Hermite–Hadamard type inequalities in the setting of multiplicative calculus.
Serap Özcan +4 more
wiley +1 more source
The connection between generalized convexity and analytic operators is deeply rooted in functional analysis and operator theory. To put the ideas of preinvexity and convexity even closer together, we might state that preinvex functions are extensions of convex functions. Integral inequalities are developed using different types of order relations, each
Zareen A. Khan +2 more
wiley +1 more source
Generalization of q‐Integral Inequalities for (α, ℏ − m)‐Convex Functions and Their Refinements
This article finds q‐ and h‐integral inequalities in implicit form for generalized convex functions. We apply the definition of q − h‐integrals to establish some new unified inequalities for a class of (α, ℏ − m)‐convex functions. Refinements of these inequalities are given by applying a class of strongly (α, ℏ − m)‐convex functions. Several q‐integral
Ria H. Egami +5 more
wiley +1 more source
Refined and Generalized Versions of Hölder’s Inequality via Schur Convexity of Functions
In this paper, we introduce a class of functions associated with Hölder’s inequality and show the Schur convexities of these functions. With the help of Schur convexity, several improved versions of Hölder’s inequality are established. The results obtained here are the generalizations and refinements of the existing results for Hölder’s inequality.
Shanhe Wu, Raúl E. Curto
wiley +1 more source
Approximate Hermite-Hadamard inequality [PDF]
The main results of this paper offer sufficient conditions in order that an approximate lower Hermite-Hadamard type inequality imply an approximate Jensen convexity property.
Házy, Attila, Makó, Judit
core
Hermite-Hadamard type inequalities for Wright-convex functions of several variables
We present Hermite--Hadamard type inequalities for Wright-convex, strongly convex and strongly Wright-convex functions of several variables defined on ...
Wasowicz, Sz., Śliwińska, D.
core +2 more sources
In this note, we introduce the concept of ℏ‐Godunova–Levin interval‐valued preinvex functions. As a result of these novel notions, we have developed several variants of Hermite–Hadamard and Fejér‐type inequalities under inclusion order relations. Furthermore, we demonstrate through suitable substitutions that this type of convexity unifies a variety of
Zareen A. Khan +4 more
wiley +1 more source
Further refinements of the Cauchy-Schwarz inequality for matrices [PDF]
Let $A, B$ and $X$ be $n\times n$ matrices such that $A, B$ are positive semidefinite. We present some refinements of the matrix Cauchy-Schwarz inequality by using some integration techniques and various refinements of the Hermite--Hadamard inequality ...
Bakherad, Mojtaba
core
On Improved Simpson‐Type Inequalities via Convexity and Generalized Fractional Operators
In this work, we develop novel Simpson‐type inequalities for mappings with convex properties by employing operators for tempered fractional integrals. These findings expand upon and refine classical results, including those linked to Riemann–Liouville fractional integrals.
Areej A. Almoneef +4 more
wiley +1 more source
Jensen–Mercer inequality for GA-convex functions and some related inequalities
In this paper, firstly, we prove a Jensen–Mercer inequality for GA-convex functions. After that, we establish weighted Hermite–Hadamard’s inequalities for GA-convex functions using the new Jensen–Mercer inequality, and we establish some new inequalities ...
İmdat İşcan
doaj +1 more source

