Results 91 to 100 of about 210,178 (311)
Understanding Decoherence of the Boron Vacancy Center in Hexagonal Boron Nitride
State‐of‐the‐art computations unravel the intricate decoherence dynamics of the boron vacancy center in hexagonal boron nitride across magnetic fields from 0 to 3 T. Five distinct regimes emerge, dominated by nuclear spin interactions, revealing optimal coherence times of 1–20 µs in the 180–350 mT range for isotopically pure samples.
András Tárkányi, Viktor Ivády
wiley +1 more source
Mesoscopic Magnetic/Semiconductor Heterostructures [PDF]
We report the experimental results of Fe and Fe3O4 nanostructures on GaAs(100) surfaces and hybrid Ferromagnetic/Semiconductor/Ferromagnetic (FM/SC/FM) spintronic devices. Element specific x-ray magnetic circular dichroism (XMCD) measurements have shown directly that Fe atoms on the GaAs(100)-4 x 6 surface are ferromagnetic.
Xu, Yong Bing +5 more
openaire +2 more sources
Clean‐Limit 2D Superconductivity in a Thick Exfoliated Kagome Film
This study reports clean‐limit 2D superconductivity in a thick kagome system, analogous to the 3D case. It observes a drop in superfluid stiffness near the superconducting transition and a cusp‐like feature in the angular dependence of the upper critical field.
Fei Sun +3 more
wiley +1 more source
Electroactive Metal–Organic Frameworks for Electrocatalysis
Electrocatalysis is crucial in sustainable energy conversion as it enables efficient chemical transformations. The review discusses how metal–organic frameworks can revolutionize this field by offering tailorable structures and active site tunability, enabling efficient and selective electrocatalytic processes.
Irena Senkovska +7 more
wiley +1 more source
Principal technologies used for heterostructures growth are described: molecular beam epitaxy (MBE), metalorganic chemical vapor deposition (MOCVD), atomic layer deposition (ALD). The main tools for characterization of the structures obtained are presented along with recent experimental data on the most important structural and electrical properties of
openaire +1 more source
Band Alignment in In‐Oxo Metal Porphyrin SURMOF Heterojunctions
Porphyrin core metalation in indium‑oxo SURMOFs enables systematic tuning of band edge positions without altering the crystal structure. First‑principles calculations reveal type‑I and type‑II heterostructures as well as multi‑junction energy cascades, establishing a modular strategy for exciton funneling and charge separation in optoelectronic ...
Puja Singhvi, Nina Vankova, Thomas Heine
wiley +1 more source
Multicolor optoelectronic synapses are realized by vertically integrating solution‐processed MoS2 thin‐film and SWCNT. The electronically disconnected but interactive MoS2 enables photon‐modulated remote doping, producing a bi‐directional photoresponse.
Jihyun Kim +8 more
wiley +1 more source
Phase-change heterostructure enables ultralow noise and drift for memory operation
Getting more bits out of PCRAM Phase-change random access memory (PCRAM) has the ability to both store and process information. It also suffers from noise and electrical drift due to damage that accumulates during the cycling process.
Keyuan Ding +9 more
semanticscholar +1 more source
Two‐Dimensional Materials as a Multiproperty Sensing Platform
Various sensing modalities enabled and/or enhanced by two‐dimensional (2D) materials are reviewed. The domains considered for sensing include: 1) optoelectronics, 2) quantum defects, 3) scanning probe microscopy, 4) nanomechanics, and 5) bio‐ and chemosensing.
Dipankar Jana +11 more
wiley +1 more source
Charge transfer properties between 3D and 2D perovskite layers play a key role in determining the performance of 3D/2D heterostructure perovskite solar cells (PSCs).
Di Li +10 more
doaj +1 more source

