Results 61 to 70 of about 338,375 (294)

Effects of Molecular Designs and Double‐Network Morphologies for Bioadhesive Semiconductors

open access: yesAdvanced Functional Materials, EarlyView.
This study establishes molecular‐to‐mesoscale design rules for bioadhesive semiconducting polymers (BASCs). It identifies how side‐chain length, double‐network formation, and film thickness modulate adhesion strength and electronic performance, providing insight into the rational design of intrinsically adhesive semiconductors for stable and efficient ...
Zhichang Liu   +8 more
wiley   +1 more source

Development of a Synthetic 3D Platform for Compartmentalized Kidney In Vitro Disease Modeling

open access: yesAdvanced Healthcare Materials, EarlyView.
A fully synthetic, compartmentalized 3D kidney disease model is introduced. The kidney model combines a PEG‐based hydrogel matrix with anisotropic, enzymatically degradable rod‐shaped microgels to spatially arrange a triple co‐culture of key renal epithelial, endothelial, and fibroblast cells.
Ninon Möhl   +8 more
wiley   +1 more source

A Synovium‐on‐Chip Platform to Study Multicellular Interactions in Arthritis

open access: yesAdvanced Healthcare Materials, EarlyView.
The Synovium‐on‐Chip comprises a thin microporous PDMS membrane to support co‐culture of fibroblast‐like synoviocytes (FLS), THP‐1‐derived macrophages, and endothelial cells, enabling real‐time analysis of synovial‐vascular interactions. FLS migration through the pores drives endothelial remodeling, while TNF‐α stimulation induces robust inflammatory ...
Laurens R. Spoelstra   +8 more
wiley   +1 more source

Injectable Stimuli‐Responsive Amphiphilic Hydrogel for Rapid Hemostasis, Robust Tissue Adhesion, and Controlled Drug Delivery in Trauma and Surgical Care

open access: yesAdvanced Healthcare Materials, EarlyView.
Fast‐acting hydrogel seals bleeding wounds as the illustrated injectable, pH‐responsive network rapidly gels in situ to stop hemorrhage, adhere strongly to wet tissue, and release antibiotics in a controlled, pH‐dependent manner. The material withstands high pressures, shows excellent biocompatibility, and degrades safely, offering a versatile platform
Arvind K. Singh Chandel   +5 more
wiley   +1 more source

Biofilm‐Antagonist Ginger‐Based 3D‐Printable Photoresins for Complex Implant Designs Exhibiting Advanced Multifunctional Biomedical Applications

open access: yesAdvanced Materials, EarlyView.
This work offers unique Ginger‐based 3D‐printable resins that can print customizable high‐resolution complex designs. The customizable printing backbone of Zingerol prints also mimics various human bones' strength. Acquisition of in‐vivo biocompatibility in rat model with no severe inflammatory response, along with in‐vitro antioxidant and ex‐vivo anti‐
Simran Jindal   +9 more
wiley   +1 more source

Circularly Polarized Polariton Lasing from Spin‐Momentum Locking in Deformed Plasmonic Kagome Cavities

open access: yesAdvanced Materials, EarlyView.
This paper describes room‐temperature polariton lasing with high circular polarization from deformed plasmonic Kagome lattice cavities strongly coupled to colloidal CdSe nanoplatelets. Spin‐selectivity from cavity modes resulted in control over the handedness of circular polarization as well as the direction of polariton lasing, opening prospects for ...
Zhaoyun Zheng   +6 more
wiley   +1 more source

In Situ Amine Formation to Modulate MOF‐Derived PdIn N‐Doped Carbon Catalysts

open access: yesAdvanced Materials, EarlyView.
An amine‐assisted approach converts PdIn‐MOF into PdIn intermetallic nanoparticles embedded in N‐doped carbon. In situ‐generated amines trigger early Pd nucleation, producing smaller PdIn domains than direct pyrolysis. Amine sterics and basicity tune composition and particle size, while solvent and amine co‐determine textural features.
Gonzalo Egea   +9 more
wiley   +1 more source

Isolation of steroids from n-hexane extract of the stems of Miliusa velutina Dun Hook. f. et. Thoms

open access: diamond, 2023
Bui Ngoc Phuc   +6 more
openalex   +2 more sources

Organic Electrochemical Transistors for Neuromorphic Devices and Applications

open access: yesAdvanced Materials, EarlyView.
Organic electrochemical transistors are emerging as promising platforms for neuromorphic devices that emulate neuronal and synaptic activities and can seamlessly integrate with biological systems. This review focuses on resultant organic artificial neurons, synapses, and integrated devices, with an emphasis on their ability to perform neuromorphic ...
Kexin Xiang   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy