Results 191 to 200 of about 79,951 (308)
This study introduces an innovative interpenetrating layered structure, comprising alternating aramid nanofiber (ANF) layers and MXene layers, fabricated through a directional freeze–thaw intercalation–gel‐film formation strategy. Unlike traditional homogeneous layered films, this unique layered structure features mutually embedded conductive and ...
Hongli Cheng +9 more
wiley +1 more source
Effect of Milling Time and Reinforcement Volume Fraction on Microstructure and Mechanical Properties of SiCp-Reinforced AA2017 Composite Powder Produced by High-Energy Ball Milling. [PDF]
Gasha SB, Trautmann M, Wagner G.
europepmc +1 more source
Thermoelectric Property Mapping for High‐Performance Integrated MgAgSb‐MgCuSb System
From the property mapping of the MgAgSb–MgCuSb system, both thermoelectric materials and corresponding interface materials are optimized: Ag‐rich compositions provide higher PF and zT, whereas Cu‐rich side yields superior transport properties and low contact resistance.
Jiankang Li +5 more
wiley +1 more source
Inspired by the regulation mechanism of window blinds, this study designs an electromagnetic wave‐absorbing metamaterial. By introducing the magneto‐electric coupling concept and integrating it with an artificial intelligence‐based data‐driven collaborative optimization strategy, the material optimizes impedance matching performance and enhances loss ...
Zhe Wang +9 more
wiley +1 more source
Perovskite gas sensor : prepared by High Energy Ball Milling
The aim of this project is to explore the possibility of exploitation of nanostructured mixed oxides obtained by HEBM technique in development of high efficient gas sensors in terms of performance and cost. LaFeO3 and LaCoO3 formulations were chosen as perovskite-based materials, based on their intrinsic sensing properties reported on the literature ...
openaire +1 more source
This study proposes a synergistic strategy combining mild sintering of solid electrolyte pellets with lithium metal surface passivation, effectively suppressing dendrite growth, and enhancing interfacial stability. This approach doubles the critical current density of symmetric cells (1.1 to 2.2 mA cm−2) and extends full cells cycle life at 1 mA cm−2 ...
Jinsong Zhang +3 more
wiley +1 more source
A neural network‐enabled permittivity engineering paradigm is introduced, transcending traditional trial‐and‐error design. By decoupling electromagnetic parameters and screening a high‐throughput feature space, an ultrathin (1.0 mm) magnetic absorber is inversely designed, experimentally achieving a superior and customizable 5.1 GHz bandwidth and ...
Chenxi Liu +9 more
wiley +1 more source
Using Additives to Control the Decomposition Temperature of Sodium Borohydride [PDF]
Jubert Tomasso, Camille +3 more
core
Non‐Equilibrium Synthesis Methods to Create Metastable and High‐Entropy Nanomaterials
ABSTRACT Stabilizing multiple elements within a single phase enables the creation of advanced materials with exceptional properties arising from their complex composition. However, under equilibrium conditions, the Hume–Rothery rules impose strict limitations on solid‐state miscibility, restricting combinations of elements with mismatched crystal ...
Shuo Liu +3 more
wiley +1 more source
Quasi‐Antipolar Nanoclusters Driven Superior Energy Storage in High‐Entropy Relaxor Ferroelectrics
Quasi‐antipolar nanoclusters are engineered in lead‐free NaNbO3‐based high‐entropy relaxors that weaken polar nanoregion coupling and induce distinct ferroelectric transition under high fields to enable desirable polarization response. This breakthrough system achieves ultrahigh recoverable‐energy‐density (≈18.3 J cm−3), efficiency (≈91.5%), and ...
Ao Tian +12 more
wiley +1 more source

