Results 11 to 20 of about 20,498 (195)
Copulas in Hilbert spaces [PDF]
In this article, the concept of copulas is generalised to infinite dimensional Hilbert spaces. We show one direction of Sklar's theorem and explain that the other direction fails in infinite dimensional Hilbert spaces. We derive a necessary and sufficient condition which allows to state this direction of Sklar's theorem in Hilbert spaces.
Hausenblas, Erika, Riedle, Markus
openaire +6 more sources
Generalized Cauchy–Schwarz Inequalities and A-Numerical Radius Applications
The purpose of this research paper is to introduce new Cauchy–Schwarz inequalities that are valid in semi-Hilbert spaces, which are generalizations of Hilbert spaces.
Najla Altwaijry +2 more
doaj +1 more source
Hilbert space of wormholes [PDF]
Wormhole boundary conditions for the Wheeler--DeWitt equation can be derived from the path integral formulation. It is proposed that the wormhole wave function must be square integrable in the maximal analytic extension of minisuperspace. Quantum wormholes can be invested with a Hilbert space structure, the inner product being naturally induced by the ...
openaire +7 more sources
Quasi-inner product spaces of quasi-Sobolev spaces and their completeness
Sequences spaces , m , p have called quasi-Sobolev spaces were introduced by Jawad . K. Al-Delfi in 2013 [1]. In this paper , we deal with notion of quasi-inner product space by using concept of quasi-normed space which is ...
Jawad Kadhim Khalaf Al-Delfi
doaj +1 more source
Approximation of the Hilbert transform in the Lebesgue spaces
The Hilbert transform plays an important role in the theory and practice of signal processing operations in continuous system theory because of its relevance to such problems as envelope detection and demodulation, as well as its use in relating the ...
Rashid Aliev, Lale Alizade
doaj +1 more source
About the Legendre type operators [PDF]
The article considers Legendre type operators acting in the corresponding weight separable Hilbert spaces. The choice of these spaces is due to the fact that these operators preserve all properties of the Legendre operator acting on L2 (-1,1).
Maleko Evgeny
doaj +1 more source
New Properties of Dual Continuous K-g-Frames in Hilbert Spaces
The concept of frames in Hilbert spaces continues to play a very interesting role in many kinds of applications. In this paper, we study the notion of dual continuous K-g-frames in Hilbert spaces. Also, we establish some new properties.
Abdeslam Touri +2 more
doaj +1 more source
Hilbert spaces induced by Hilbert space valued functions [PDF]
Let E E be an arbitrary set and F ( E ) \mathcal {F}(E) a linear space composed of all complex valued functions on E E . Let H \mathcal {H} be a (possibly finite-dimensional) Hilbert space with inner product (
openaire +2 more sources
A Banach space \(X\) is called \(\mathcal P\)-generated (where \(\mathcal P\) is a property of Banach spaces) if there is a Banach space \(Y\) with property \(\mathcal P\) and a continuous linear operator from \(Y\) into \(X\) with dense range. \textit{M. Fabian}, \textit{G. Godefroy} and \textit{V. Zizler} [Isr. J. Math.
Gilles Godefroy +3 more
openaire +3 more sources
Linear algebra and differential geometry on abstract Hilbert space
Isomorphisms of separable Hilbert spaces are analogous to isomorphisms of n-dimensional vector spaces. However, while n-dimensional spaces in applications are always realized as the Euclidean space Rn, Hilbert spaces admit various useful realizations as ...
Alexey A. Kryukov
doaj +1 more source

