Results 271 to 280 of about 388,221 (319)

Engineered Protein‐Based Ionic Conductors for Sustainable Energy Storage Applications

open access: yesAdvanced Materials, EarlyView.
Rational incorporation of charged residues into an engineered, self‐assembling protein scaffold yields solid‐state protein films with outstanding ionic conductivity. Salt‐doping further enhances conductivity, an effect amplified in the engineered variants. These properties enable the material integration into an efficient supercapacitor.
Juan David Cortés‐Ossa   +14 more
wiley   +1 more source

Polyimide‐Linked Hexaazatriphenylene‐Based Porous Organic Polymer with Multiple Redox‐Active Sites as a High‐Capacity Organic Cathode for Lithium‐Ion Batteries

open access: yesAdvanced Materials, EarlyView.
A high‐capacity polyimide‐linked porous organic polymer (HAT‐PTO) incorporating numerous redox‐active centers is synthesized via a hydrothermal reaction, delivering a high theoretical capacity of 484 mAh g−1. In situ hybridization with carboxyl‐functionalized multiwalled carbon nanotubes enhances conductivity and stability, achieving 397 mAh g−1 at C ...
Arindam Mal   +7 more
wiley   +1 more source

Reactive Carbide‐Based Synthesis and Microstructure of NASICON Sodium Metal All Solid‐State Electrolyte

open access: yesAdvanced Materials, EarlyView.
Sodium Metal All‐Solid State Batteries (Na‐ASSBs) are enabled by the synthesis of the solid state electrolyte, NASICON (Na1+xZr2SixP3‐xO12), using carbide‐based precursor compounds (ZrC and SiC); resulting in dense, pure, and mechanically improved microstructure.
Callum J. Campbell   +10 more
wiley   +1 more source

Radiation‐Resistant Aluminum Alloy for Space Missions in the Extreme Environment of the Solar System

open access: yesAdvanced Materials, EarlyView.
A novel ultrafine‐grained aluminum crossover alloy exhibits unprecedented radiation resistance and mechanical stability under extreme irradiation doses up to 100 dpa. The exceptional resilience arises from thermodynamically stable T‐phase precipitates, enabling lightweight structural materials for next‐generation spacecraft and extraterrestrial ...
Patrick D. Willenshofer   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy