Results 61 to 70 of about 23,762 (306)
The dielectric properties of clays are studied on the level of individual monolayers and functional double stacks. The material breakdown characteristics and charge storage performance are analyzed. For illustration, a defined charge pattern representing a cuneiform character is produced, written into a microscopic clay tile, referencing the origins of
Sebastian Gödrich +6 more
wiley +1 more source
Hot Deformation Behavior of Fe-2%Si
The hot deformation behavior of a high purity binary ferritic Fe-2 mass% Si alloy, undergoing no phase transformation or precipitation reactions, was investigated by hot torsion tests. The parameters for the constitutive equation of Fe-2 mass% Si steel were experimentally determined from the stress-strain curves.
Kyu Seok HAN +2 more
openaire +3 more sources
Most matter is nominally frozen in the polar regions or space, and liquid crystal materials are no exception. Consequently, soft actuators, including liquid crystal elastomers (LCEs), are inoperative under such extreme cold in response to stimuli, as their motion relies on mechanical deformation.
Hyeonseong Kim +5 more
wiley +1 more source
Shellac, a centuries‐old natural resin, is reimagined as a green material for flexible electronics. When combined with silver nanowires, shellac films deliver transparency, conductivity, and stability against humidity. These results position shellac as a sustainable alternative to synthetic polymers for transparent conductors in next‐generation ...
Rahaf Nafez Hussein +4 more
wiley +1 more source
In this study, the hot deformation behavior of an as-cast and hot rolled β21S alloy (Ti–15Mo–3Al–3Nb–0.2Si) was investigated. Based on the hot compression tests, which were conducted at high temperatures (800–1200 °C) using different strain rates (10−2 ...
Chan Woong Park +5 more
doaj +1 more source
Hot deformation behavior of Hastelly C276 superalloy
Hot tensile behavior of C276 superalloy was studied in the deformation temperature range of 650-750 degrees C with the strain rate range of 0.35-35 mm/s. The results show that deformation temperature and strain rate both have significant influence on the flow stress.
Yan-ling LU +6 more
openaire +1 more source
There is a significant need for biomaterials with well‐defined stability and bioactivity to support tissue regeneration. In this study, we developed a tunable microgel platform that enables the decoupling of stiffness from porosity, thereby promoting bone regeneration.
Silvia Pravato +9 more
wiley +1 more source
Hot deformation behavior and flow-stress anomaly of 5Cr9Si3 valve steel at elevated temperatures
The hot deformation behavior of 5Cr9Si3 valve steel was investigated by hot working simulation test at different hot working parameters. When the deformation temperature increases from 850 to 900℃ or from 1000 to 1100℃, the peak stress decreases; but ...
WU Yun-sheng +4 more
doaj +1 more source
This review explores functional and responsive materials for triboelectric nanogenerators (TENGs) in sustainable smart agriculture. It examines how particulate contamination and dirt affect charge transfer and efficiency. Environmental challenges and strategies to enhance durability and responsiveness are outlined, including active functional layers ...
Rafael R. A. Silva +9 more
wiley +1 more source
Device Integration Technology for Practical Flexible Electronics Systems
Flexible device integration technologies are essential for realizing practical flexible electronic systems. In this review paper, wiring and bonding techniques critical for the industrial‐scale manufacturing of wearable devices are emphasized based on flexible electronics.
Masahito Takakuwa +5 more
wiley +1 more source

