Results 151 to 160 of about 976,647 (347)
Conductive silk‐polypyrrole scaffolds couple redox stability with cell‐affinitive peptides present innately in an endogenous silk fibroin, enabling optimized electrical stimulation to drive neurite outgrowth. Findings establish electrochemical‐biological link for biomaterial design rules for smart nerve guidance conduits that can provide low voltage ...
Rajiv Borah +5 more
wiley +1 more source
Aging is associated with loss of skeletal muscle mass, strength and endurance. The aim of this study was to determinate age related changes in human muscles with different function and location in the body (vastus lateralis muscle and intercostal ...
Juraj Arbanas +4 more
core +1 more source
BLOC: Buildable and Linkable Organ on a Chip
We developed a “Buildable and Linkable Organ on a Chip” (BLOC) that can construct diverse microphysiological systems (MPSs). The BLOC is standardized to the same size and has one of the functions of “Culture,” “Control,” or “Analysis.” Users can freely configure various MPSs, including developing perfusion, cytotoxicity analysis, and biochemical ...
Yusuke Kimura +7 more
wiley +1 more source
Fabrication, Properties, and Applications of Scaffolds for Bone Tissue Regeneration
This review explores cutting‐edge biomaterials and fabrication techniques for scaffolds in bone tissue regeneration. It conducts a critical comparison of various strategies, meticulously analyzes the key contradictions in the field, and outlines an integrated development path spanning from biomaterial selection to clinical application, while ...
Shangsi Chen, Min Wang
wiley +1 more source
This review explores the integration of microfluidic technology with organoid systems as an innovative platform for studying menopausea complex multi‐organ condition. By enabling precise simulation of inter‐organ communication and hormone responses, microfluidic organoids offer a physiologically relevant model for investigating menopausal syndrome and ...
Qianyi Zhang +4 more
wiley +1 more source
Flexible Sensor‐Based Human–Machine Interfaces with AI Integration for Medical Robotics
This review explores how flexible sensing technology and artificial intelligence (AI) significantly enhance human–machine interfaces in medical robotics. It highlights key sensing mechanisms, AI‐driven advancements, and applications in prosthetics, exoskeletons, and surgical robotics.
Yuxiao Wang +5 more
wiley +1 more source
3D Elastomeric Kirigami for Passively Stretchable Fully Soft Vacuum‐Powered Artificial Muscles
The creation of purely soft, passively stretchable artificial muscles has long been a hot topic in robotics research. Here, we present a design approach involving the extension of 2D kirigami to 3D elastomeric kirigami structures. In a biomimetic demonstration of the human upper arm, this approach successfully simulated the driving mechanism ...
Tao Wang +8 more
wiley +1 more source
This study introduces a hybrid robot that integrates mechanical assistance by musculoskeletons (i.e., soft pneumatic muscle with rigid exoskeletal extensions), neuromuscular electrical stimulation, and vibrotactile feedback in a lightweight wearable mechatronic complex applicable to the paretic ankle–foot poststroke for gait restoration. The system can
Fuqiang Ye +16 more
wiley +1 more source
Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes.
D. Kelley +3 more
semanticscholar +1 more source
Biohybrid Actuators in Compact Arrangement with Embedded X Electrode
Selective control of multimuscle biohybrid actuators is crucial for achieving complex movements of biohybrid robots. In this study, embedded X electrodes are fabricated to selectively control multiple muscles, realizing the robotic finger's bidirectional movements.
Tingyu Li, Minghao Nie, Shoji Takeuchi
wiley +1 more source

