Advances in Stimuli‐Responsive Organic Materials and Polymers toward Intelligent CO2 Capture
Schematic illustration of the relationship between different stimuli and stimuli‐responsive organic materials and polymers for carbon dioxide (CO2) capture. Main stimuli include redox, pH, magnetism, temperature, light, and pressure. Furthermore, multi‐responsive materials, due to their high adaptability and scalability in complex environments, are ...
Jian Zhou +2 more
wiley +1 more source
Hydrogel-Based intraperitoneal drug delivery platforms for peritoneal metastasis: strategies, advances, and prospects. [PDF]
Chen X +7 more
europepmc +1 more source
Interconnected Porous Hydrogels with Tunable Anisotropy Through Aqueous Emulsion Bioprinting
A 3D bioprintable microporous bioink is developed using an aqueous two‐phase system (ATPS) composed of extracellular matrix (ECM) mimetic biopolymers. The ATPS bioink enables the fabrication of interconnected porous architectures with up to 70% porosity, supporting long‐term cell viability and 3D cell alignment, enabling a simultaneous generation of ...
Hugo Edgar‐Vilar +4 more
wiley +1 more source
A technique to create hydrogels with tethered concentration gradients of molecules <i>in vitro</i>.
O'Shea TC, Salem A, Schultz KM.
europepmc +1 more source
A Novel Hydrogel for Treatment and Prevention of Symptomatic Neuroma: Early Clinical Experience. [PDF]
Ostrowski P, Deng I, Kobraei EM.
europepmc +1 more source
Shape‐Morphing Nanoengineered Hydrogel Ribbons as Hemostats
This study introduces a self‐assembling, shape‐morphing nanoengineered hydrogel ribbon system that rapidly forms porous aggregates in situ for efficient hemostasis in trauma and surgical applications. Abstract Rapid and effective hemorrhage control remains a major challenge in trauma and surgical care, particularly for complex or noncompressible wounds.
Ryan Davis Jr +9 more
wiley +1 more source
Electrochemically Driven Dissipative Growth of Affinity Hydrogels for Bioresponsive Interfaces
Voltage pulses drive the growth and reinforcement of hydrogel films under dissipative conditions. This biocompatible strategy enables efficient integration of affinity ligands into the hydrogel matrix, enhancing the selective capture of growth factors and allowing precise temporal control over their release, making them well‐suited as adaptive ...
Roberto Baretta, Marco Frasconi
wiley +1 more source
A hot-humid tolerant and antibacterial MXene-based hydrogel sensor for real-time cardiorespiratory monitoring in endurance sports. [PDF]
Wang X +9 more
europepmc +1 more source
Reinforced Granular Hydrogels Scaffolds with Tunable Physicochemical Properties for Advanced Skin Tissue Engineering [PDF]
Jing Zhang +11 more
openalex +1 more source
Robust and Reversible Thermofluorescence in Solvent‐Free Thermoplastic Polyurethane Composites
Thermofluorescent polymer composites with high‐contrast optical outputs are prepared by solvent‐free blending of indenoquinacridone dye into a thermoplastic polyurethane matrix. The temperature‐dependent fluorescence originates from aggregation–dissociation of the dye molecules, regulated by competing hydrogen bonds from the polymer matrix.
Guanghua Yu +8 more
wiley +1 more source

