Results 131 to 140 of about 518,431 (293)

Emergent Spin‐Glass Behavior in an Iron(II)‐Based Metal–Organic Framework Glass

open access: yesAdvanced Functional Materials, EarlyView.
A one‐pot, solvent‐free synthesis yields an Fe2+‐based metal‐organic framework (MOF) glass featuring a continuous random network structure. The material exhibits spin‐glass freezing at 14 K, driven by topological‐disorder and short‐range magnetic frustration, showcasing the potential of MOF glasses as a plattform for cooperative magnetic phenomena in ...
Chinmoy Das   +8 more
wiley   +1 more source

The Hydrolysis of Arginine

open access: yesJournal of Biological Chemistry, 1965
K, MURRAY   +3 more
openaire   +2 more sources

An In Situ Study of the Topochemical Transformation of Hybrid Layered Hydroxides Into Metallic Nanocomposites

open access: yesAdvanced Functional Materials, EarlyView.
Herein, the topochemical transformation of cobalt‐based layered hydroxides into nanocomposites is investigated using advanced real‐time characterization techniques combined with thermogravimetric analysis. The study reveals how interlayer carboxylic acids direct the transformation pathway, highlighting the role of carbon content and anion length. These
Camilo Jaramillo‐Hernández   +5 more
wiley   +1 more source

Unusual Swelling Behavior of Hydrogels Modified with Spiropyran as Appendage or Crosslinker

open access: yesAdvanced Functional Materials, EarlyView.
Not so innocent after all—spiropyran crosslinkers in methylenebisacrylamide‐crosslinked poly(acrylamide‐co‐acrylic acid) hydrogels increase crosslinking density, but also, counterintuitively, increase swelling. Charge complexation, cooperative chemo‐mechanical effects, and aggregation may explain these observations.
Michael M. Lerch   +7 more
wiley   +1 more source

Bimetallic Nanoreactor Activates cGAS‐STING Pathway via mtDNA Release for Cancer Metalloimmunotherapy

open access: yesAdvanced Functional Materials, EarlyView.
A bimetallic Mn–Ca nanoreactor (MCC) is developed as a non‐nucleotide STING nanoagonist for cancer metalloimmunotherapy. MCC induces Ca2+ overload and hydroxyl radical generation, resulting in mitochondrial damage and mtDNA release. The released mtDNA cooperates with Mn2+ to robustly activate cGAS–STING signaling.
Xin Wang Mo   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy