Results 191 to 200 of about 93,556 (252)

Can Hyperparameter Tuning Improve the Performance of a Super Learner?: A Case Study. [PDF]

open access: yesEpidemiology, 2019
Wong J   +4 more
europepmc   +1 more source

A Generalized Framework for Data‐Efficient and Extrapolative Materials Discovery for Gas Separation

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study introduces an iterative supervised machine learning framework for metal‐organic framework (MOF) discovery. The approach identifies over 97% of the best performing candidates while using less than 10% of available data. It generalizes across diverse MOF databases and gas separation scenarios.
Varad Daoo, Jayant K. Singh
wiley   +1 more source

Computer Vision Pipeline for Image Analysis for Freeze‐Fracture Electron Microscopy: Rosette Cellulose Synthase Complexes Case

open access: yesAdvanced Intelligent Discovery, EarlyView.
This paper presents a computer vision (deep learning) pipeline integrating YOLOv8 and YOLOv9 for automated detection, segmentation, and analysis of rosette cellulose synthase complexes in freeze‐fracture electron microscopy images. The study explores curated dataset expansion for model improvement and highlights pipeline accuracy, speed ...
Siri Mudunuri   +6 more
wiley   +1 more source

FIRE‐GNN: Force‐Informed, Relaxed Equivariance Graph Neural Network for Rapid and Accurate Prediction of Surface Properties

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study introduces FIRE‐GNN, a force‐informed, relaxed equivariant graph neural network for predicting surface work functions and cleavage energies from slab structures. By incorporating surface‐normal symmetry breaking and machine learning interatomic potential‐derived force information, the approach achieves state‐of‐the‐art accuracy and enables ...
Circe Hsu   +5 more
wiley   +1 more source

Sampling Strategy: An Overlooked Factor Affecting Artificial Intelligence Prediction Accuracy of Peptides’ Physicochemical Properties

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study reveals that sampling strategy (i.e., sampling size and approach) is a foundational prerequisite for building accurate and generalizable AI models in peptide discovery. Reaching a threshold of 7.5% of the total tetrapeptide sequence space was essential to ensure reliable predictions.
Meiru Yan   +3 more
wiley   +1 more source

Comparison of DeePMD, MTP, GAP, ACE and MACE Machine‐Learned Potentials for Radiation‐Damage Simulations: A User Perspective

open access: yesAdvanced Intelligent Discovery, EarlyView.
The authors evaluated six machine‐learned interatomic potentials for simulating threshold displacement energies and tritium diffusion in LiAlO2 essential for tritium production. Trained on the same density functional theory data and benchmarked against traditional models for accuracy, stability, displacement energies, and cost, Moment Tensor Potential ...
Ankit Roy   +8 more
wiley   +1 more source

Toward Predictable Nanomedicine: Current Forecasting Frameworks for Nanoparticle–Biology Interactions

open access: yesAdvanced Intelligent Discovery, EarlyView.
Predictive models successfully screen nanoparticles for toxicity and cellular uptake. Yet, complex biological dynamics and sparse, nonstandardized data limit their accuracy. The field urgently needs integrated artificial intelligence/machine learning, systems biology, and open‐access data protocols to bridge the gap between materials science and safe ...
Mariya L. Ivanova   +4 more
wiley   +1 more source

OXidative Stress PREDictor: A Supervised Learning Approach for Annotating Cellular Oxidative Stress States in Inflammatory Cells

open access: yesAdvanced Intelligent Systems, Volume 7, Issue 3, March 2025.
OxSpred, an eXtreme‐Gradient‐Boosting‐‐based supervised learning model, accurately annotates oxidative stress in innate immune cells at the single‐cell level, providing interpretable embeddings with significant biological relevance. This innovative tool revolutionizes the understanding of innate immune cell functions during inflammation and enhances ...
Po‐Yuan Chen, Tai‐Ming Ko
wiley   +1 more source

Robust Reinforcement Learning Control Framework for a Quadrotor Unmanned Aerial Vehicle Using Critic Neural Network

open access: yesAdvanced Intelligent Systems, Volume 7, Issue 3, March 2025.
Quadrotor unmanned aerial vehicle control is critical to maintain flight safety and efficiency, especially when facing external disturbances and model uncertainties. This article presents a robust reinforcement learning control scheme to deal with these challenges.
Yu Cai   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy