Results 41 to 50 of about 85,527 (236)
Isoperimetric inequalities on slabs with applications to cubes and Gaussian slabs
Abstract We study isoperimetric inequalities on “slabs”, namely weighted Riemannian manifolds obtained as the product of the uniform measure on a finite length interval with a codimension‐one base. As our two main applications, we consider the case when the base is the flat torus R2/2Z2$\mathbb {R}^2 / 2 \mathbb {Z}^2$ and the standard Gaussian measure
Emanuel Milman
wiley +1 more source
Dispersion‐Less Dissipative Soliton Fiber Laser
A dispersion‐less fiber laser architecture generates high‐energy, pedestal‐free picosecond pulses without resorting to conventional pulse stretching. This energy‐managed laser achieves remarkable flexibility in pulse parameters, delivering up to 0.54 μJ$\mathrm{\mu}\mathrm{J}$ pulses with minimal spectral distortion using standard telecom components ...
Mostafa I. Mohamed +2 more
wiley +1 more source
Generic hypersurface singularities
We give a new differential proof of our result on the maximal rank of generic unions of points of multiplicity two in projective space in degrees greater than five. This simplifies somewhat our proof of the Waring conjecture.
Alexander, James, Hirschowitz, André
openaire +3 more sources
Abstract This paper is devoted to the approximation of two‐ and three‐dimensional Dirac operators HV∼δΣ$H_{\widetilde{V} \delta _\Sigma }$ with combinations of electrostatic and Lorentz scalar δ$\delta$‐shell interactions in the norm resolvent sense. Relying on results from Behrndt, Holzmann, and Stelzer‐Landauer [Math. Nachr.
Jussi Behrndt +2 more
wiley +1 more source
Nonrational Weighted Hypersurfaces [PDF]
AbstractThe aim of this paper is to construct (i) infinitely many families of nonrational ℚ-Fano varieties of arbitrary dimension ≥ 4 with at most quotient singularities, and (ii) twelve families of nonrational ℚ-Fano threefolds with at most terminal singularities among which two are new and the remaining ten give an alternate proof of nonrationality ...
openaire +3 more sources
CR-hypersurfaces of the six-dimensional sphere
We proved that there does not exist a proper CR-hypersurface of S6 with parallel second fundamental form. As a result of this we showed that S6 does not admit a proper CR-totally umbilical hypersurface.
M. A. Bashir
doaj +1 more source
Characterization of Biharmonic Hypersurface
The main purpose of this paper is to study biharmonic hypersurface in a quasi-paraSasakian manifold $\mathbb{Q}^{2m+1}$. Biharmonic hypersurfaces are special cases of biharmonic maps and biharmonic maps are the critical points of the bienergy functional.
S.K. Srivastava, K. Sood, K. Srivastava
doaj +1 more source
Vector bundles on bielliptic surfaces: Ulrich bundles and degree of irrationality
Abstract This paper deals with two problems about vector bundles on bielliptic surfaces. The first is to give a classification of Ulrich bundles on such surfaces S$S$, which depends on the topological type of S$S$. In doing so, we study the weak Brill–Noether property for moduli spaces of sheaves with isotropic Mukai vector. Adapting an idea of Moretti
Edoardo Mason
wiley +1 more source
Parallel umbilical hypersurfaces [PDF]
The only umbilical surfaces of Euclidean space are planes and spheres. We propose to study umbilical hypersurfaces in Riemannian space with the added condition that they constitute a system of parallels. As will be shown, such families only exist in spaces of constant curvature.
openaire +1 more source
On the backward stability of the Schwarzschild black hole singularity
We study the backwards-in-time stability of the Schwarzschild singularity from a dynamical PDE point of view. More precisely, considering a spacelike hypersurface $\Sigma_0$ in the interior of the black hole region, tangent to the singular hypersurface $\
Fournodavlos, Grigorios
core +1 more source

