Results 51 to 60 of about 84,048 (226)
CR-hypersurfaces of the six-dimensional sphere
We proved that there does not exist a proper CR-hypersurface of S6 with parallel second fundamental form. As a result of this we showed that S6 does not admit a proper CR-totally umbilical hypersurface.
M. A. Bashir
doaj +1 more source
Bernstein-type theorems in hypersurfaces with constant mean curvature
By using the nodal domains of some natural function arising in the study of hypersurfaces with constant mean curvature we obtain some Bernstein-type theorems.
MANFREDO P. DO CARMO, DETANG ZHOU
doaj +1 more source
Arithmetic sparsity in mixed Hodge settings
Abstract Let X$X$ be a smooth irreducible quasi‐projective algebraic variety over a number field K$K$. Suppose X$X$ is equipped with a p$p$‐adic étale local system compatible with an admissible graded‐polarized variation of mixed Hodge structures on the complex analytification of XC$X_{\operatorname{\mathbb {C}}}$.
Kenneth Chung Tak Chiu
wiley +1 more source
Characterization of Biharmonic Hypersurface
The main purpose of this paper is to study biharmonic hypersurface in a quasi-paraSasakian manifold $\mathbb{Q}^{2m+1}$. Biharmonic hypersurfaces are special cases of biharmonic maps and biharmonic maps are the critical points of the bienergy functional.
S.K. Srivastava, K. Sood, K. Srivastava
doaj +1 more source
A note on the magnetic Steklov operator on functions
Abstract We consider the magnetic Steklov eigenvalue problem on compact Riemannian manifolds with boundary for generic magnetic potentials and establish various results concerning the spectrum. We provide equivalent characterizations of magnetic Steklov operators which are unitarily equivalent to the classical Steklov operator and study bounds for the ...
Tirumala Chakradhar+3 more
wiley +1 more source
On the stability of minimal cones in warped products
In a seminal paper published in $1968$, J. Simons proved that, for $n\leq 5$, the Euclidean (minimal) cone $CM$, built on a closed, oriented, minimal and non totally geodesic hypersurface $M^n$ of $\mathbb S^{n+1}$ is unstable.
Bezerra, K. S., Caminha, A., Lima, B. P.
core +1 more source
On the backward stability of the Schwarzschild black hole singularity
We study the backwards-in-time stability of the Schwarzschild singularity from a dynamical PDE point of view. More precisely, considering a spacelike hypersurface $\Sigma_0$ in the interior of the black hole region, tangent to the singular hypersurface $\
Fournodavlos, Grigorios
core +1 more source
On the resultant hypersurface [PDF]
The resultant R(f,g) of two polynomials f and g is an irreducible polynomial such that R(f,g) = 0 if and only if the equations f = 0 and g = 0 have one common root. When g = f′∕p, then D(f) = R(f,g) is called the discriminant of f and the discriminant hypersurface Dp = {f ∈ Cp,D(f) = 0} can be identified to the discriminant of a versal ...
openaire +3 more sources
On the hypersurfaces contained in their Hessian [PDF]
Abstract This article presents the theory of focal locus applied to the hyper-surfaces in the projective space which are (finitely) covered by linear spaces and such that the tangent space is constant along these spaces.
Giovanna Ilardi, Pietro De Poi
openaire +7 more sources