Results 41 to 50 of about 10,120 (121)
The numerical duplication of a numerical semigroup
In this paper we present and study the numerical duplication of a numerical semigroup, a construction that, starting with a numerical semigroup $S$ and a semigroup ideal $E\subseteq S$, produces a new numerical semigroup, denoted by $S\Join^b\E$ (where ...
D'Anna, Marco, Strazzanti, Francesco
core +1 more source
Topological Aspects of Quadratic Graphs and M‐Polynomials Utilizing Classes of Finite Quasigroups
Material science, drug design and toxicology studies, which relate a molecule’s structure to its numerous properties and activities, are studied with the use of the topological index. Graphs with finite algebraic structure find extensive applications in fields such as mathematics, elliptic curve cryptography, physics, robotics and information theory ...
Mohammad Mazyad Hazzazi +5 more
wiley +1 more source
On locally compact semitopological $0$-bisimple inverse $\omega$-semigroups
We describe the structure of Hausdorff locally compact semitopological $0$-bisimple inverse $\omega$-semigroups with compact maximal subgroups. In particular, we show that a Hausdorff locally compact semitopological $0$-bisimple inverse $\omega ...
Gutik, Oleg
core +2 more sources
This paper advances the theory of bipolar Pythagorean neutrosophic fuzzy (BPNF) sets by establishing their formalization within a topological and metric framework, while also demonstrating their role in decision‐making under uncertainty. The main contributions are as follows: (1) definition and characterization of BPNF topological spaces, providing a ...
Akiladevi Natarajan +5 more
wiley +1 more source
Vladimirov–Pearson operators on ζ$\zeta$‐regular ultrametric Cantor sets
Abstract A new operator for certain types of ultrametric Cantor sets is constructed using the measure coming from the spectral triple associated with the Cantor set, as well as its zeta function. Under certain mild conditions on that measure, it is shown that it is an integral operator similar to the Vladimirov–Taibleson operator on the p$p$‐adic ...
Patrick Erik Bradley
wiley +1 more source
Debiasing piecewise deterministic Markov process samplers using couplings
Abstract Monte Carlo methods—such as Markov chain Monte Carlo (MCMC) and piecewise deterministic Markov process (PDMP) samplers—provide asymptotically exact estimators of expectations under a target distribution. There is growing interest in alternatives to this asymptotic regime, in particular in constructing estimators that are exact in the limit of ...
Adrien Corenflos +2 more
wiley +1 more source
Conformal optimization of eigenvalues on surfaces with symmetries
Abstract Given a conformal action of a discrete group on a Riemann surface, we study the maximization of Laplace and Steklov eigenvalues within a conformal class, considering metrics invariant under the group action. We establish natural conditions for the existence and regularity of maximizers. Our method simplifies the previously known techniques for
Denis Vinokurov
wiley +1 more source
Is every product system concrete?
Abstract Is every product system of Hilbert spaces over a semigroup P$P$ concrete, that is, isomorphic to the product system of an E0$E_0$‐semigroup over P$P$? The answer is no if P$P$ is discrete, cancellative and does not embed in a group. However, we show that the answer is yes for a reasonable class of semigroups.
S. Sundar
wiley +1 more source
Optimal Control of AB Caputo Fractional Stochastic Integrodifferential Control System with Noninstantaneous Impulses. ABSTRACT This study is concerned with the existence of mild solution and optimal control for the Atangana–Baleanu fractional stochastic integrodifferential system with noninstantaneous impulses in Hilbert spaces. We verify the existence
Murugesan Johnson +2 more
wiley +1 more source
Pattern Formation and Nonlinear Waves Close to a 1:1 Resonant Turing and Turing–Hopf Instability
ABSTRACT In this paper, we analyze the dynamics of a pattern‐forming system close to simultaneous Turing and Turing–Hopf instabilities, which have a 1:1 spatial resonance, that is, they have the same critical wave number. For this, we consider a system of coupled Swift–Hohenberg equations with dispersive terms and general, smooth nonlinearities.
Bastian Hilder, Christian Kuehn
wiley +1 more source

