Results 221 to 230 of about 888,744 (374)

A discrete cis element in the human immunodeficiency virus long terminal repeat mediates synergistic trans activation by cytomegalovirus immediate-early proteins

open access: yesJournal of Virology, 1991
P. Ghazal   +7 more
semanticscholar   +1 more source

HIC1 suppresses Tumor Progression and Enhances CD8+ T Cells Infiltration Through Promoting GSDMD‐induced Pyroptosis in Gastric Cancer

open access: yesAdvanced Science, EarlyView.
These findings elucidate the innovative role of HIC1 as a transcriptional activator in GC, driving the initiation of pyroptosis and enhancing CD8+ T cell infiltration, which has certain novelty and creative significance. Collectively, targeting HIC1 can present an appealing immunotherapeutic strategy to improve outcomes in GC patients.
Mengjie Kang   +4 more
wiley   +1 more source

IncRNA‐ZFAS1, an Emerging Gate‐Keeper in DNA Damage‐Dependent Transcriptional Regulation

open access: yesAdvanced Science, EarlyView.
LncZFAS1 plays a crucial role during DNA damage response in mammalian cells. Loss of lncZFAS1 results in deficient DNA lesion removal and reduced cell viability. Mechanistically, lncZFAS1 modulates RNAPII phosphorylation and transcription and thereby promotes both GG‐NER and TC‐NER upon UV damage.
Jiena Liu   +10 more
wiley   +1 more source

Immediate Early Gene Expression in PC12 Cells Exposed to Lead: Requirement for Protein Kinase C [PDF]

open access: bronze, 2000
Kyung‐Ah Kim   +3 more
openalex   +1 more source

PROS1‐MERTK Axis Drives Tumor Microenvironment Crosstalk and Progression in Papillary Thyroid Microcarcinoma

open access: yesAdvanced Science, EarlyView.
Identifying biomarkers associated with PTC, particularly those related to PTMC progression, is crucial for precise risk stratification and treatment planning. This study utilized single‐cell RNA sequencing on 19 surgical tissue specimens, confirmed PROS1/MERTK axis as a critical component of the cellular microenvironment and a key regulatory mechanism ...
Wenqian Zhang   +11 more
wiley   +1 more source

Structure, Mechanics, and Mechanobiology of Fibrocartilage Pericellular Matrix Mediated by Type V Collagen

open access: yesAdvanced Science, EarlyView.
This study defines the structure, mechanics, and mechanobiology of the fibrocartilage pericellular matrix (PCM) using the murine meniscus, showing how collagen V deficiency alters PCM properties and disrupts cell mechanosensitive signaling. Findings emphasize the critical role of PCM in fibrocartilage mechanobiology and suggest targeting it can enhance
Chao Wang   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy