Results 131 to 140 of about 119,276 (274)

Impurity transport driven by kinetic ballooning mode in the strong gradient pedestal of tokamak plasmas

open access: yesNuclear Fusion
The impurity transport driven by kinetic ballooning mode (KBM) is theoretically studied in the DIII-D H-mode strong gradient pedestal plasmas. From the electromagnetic gyrokinetic equation, including the correction of the strong radial electric field ...
Shanni Huang, Weixin Guo, Lu Wang
doaj   +1 more source

Insight into the Internal Structure of Biogenic, Synthetic and Geological Apatite by Electron Microscopy and X‐Ray Scattering

open access: yesAdvanced Functional Materials, EarlyView.
Apatite occurs in many forms in nature, e.g. in teeth and geological minerals. Internally, biological apatite contains nanocrystals that are also found in synthetically prepared calcium phosphate nanoparticles which are used in biomedicine, e.g. for gene and drug delivery and for bone regeneration. Abstract Calcium phosphate is the inorganic component (
Kathrin Kostka   +3 more
wiley   +1 more source

Amorphization and siliconization of silicon carbide as a first wall material

open access: yesNuclear Fusion
The understanding and prediction of silicon carbide (SiC) material evolution exposed to SOL plasma conditions is of prime interest because SiC represents a promising main chamber wall plasma-facing material for next-step fusion devices (low hydrogenic ...
Aritra De   +6 more
doaj   +1 more source

Solvent‐Free Bonding Mechanisms and Microstructure Engineering in Dry Electrode Technology for Lithium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Dry electrode technology revolutionizes battery manufacturing by eliminating toxic solvents and energy‐intensive drying. This work details two promising techniques: dry spray deposition and polymer fibrillation. How their unique solvent‐free bonding mechanisms create uniform microstructures for thicker, denser electrodes, boosting energy density and ...
Yuhao Liang   +7 more
wiley   +1 more source

Impurity Transport and Radiation [PDF]

open access: yesFusion Science and Technology, 2008
openaire   +1 more source

High‐Yield Synthesis of Fe‐NC Electrocatalysts Using Mg2+ Templating and Schiff‐Base Porous Organic Polymers

open access: yesAdvanced Functional Materials, EarlyView.
Fe─NC porous oxygen reduction electrocatalysts are prepared employing a 2,4,6‐Triaminopyrimidine‐based porous organic polymer, a Mg2+ Lewis acid, and a low‐temperature cation exchange protocol. Using the polymer precursor achieves high pyrolysis yields and results in atomically dispersed FeNx sites. The resulting catalysts feature hierarchical porosity
Eliot Petitdemange   +11 more
wiley   +1 more source

Enrichment of impurities seeded for exhaust control in a spherical tokamak power plant geometry

open access: yesNuclear Fusion
Through SOLPS-ITER simulations, we have investigated the ability of seeded argon and neon impurities to effectively control divertor power loading in a power-plant-class spherical tokamak geometry.
S.L. Newton   +5 more
doaj   +1 more source

Microplastics from Wearable Bioelectronic Devices: Sources, Risks, and Sustainable Solutions

open access: yesAdvanced Functional Materials, EarlyView.
Bioelectronic devices (e.g., e‐skins) heavily rely on polymers that at the end of their life cycle will generate microplastics. For research, a holistic approach to viewing the full impact of such devices cannot be overlooked. The potential for devices as sources for microplastics is raised, with mitigation strategies surrounding polysaccharide and ...
Conor S. Boland
wiley   +1 more source

Impact of E× B drift on tungsten impurity transport and analysis of its instantaneous response: a particle Monte Carlo simulation

open access: yesNuclear Fusion
Tungsten (W), as the primary plasma-facing material in tokamaks, is incompatible with the core plasma. Even extremely low concentrations of W impurities can contaminate the plasma.
Yihan Wu   +6 more
doaj   +1 more source

‘Oxygen Bound to Magnesium’ as High Voltage Redox Center Causes Sloping of the Potential Profile in Mg‐Doped Layered Oxides for Na‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Na‐ion batteries ‐ Impact of doping on the oxygen redox: The sloping potential of NaMg0.1Ni0.4Mn0.5O2 above 4.0 V is caused by a new redox center (arising from the ‘O bound to Mg’), having a higher potential but being more irreversible compared to the ‘O bound to Ni’.
Yongchun Li   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy