Phase-Change Memory for In-Memory Computing. [PDF]
In-memory computing (IMC) is an emerging computational approach that addresses the processor-memory divide in modern computing systems. The core concept is to leverage the physics of memory devices and their array-level organization to perform computations directly within the memory array.
Syed GS, Le Gallo M, Sebastian A.
europepmc +3 more sources
Time Domain Analog Neuromorphic Engine Based on High-Density Non-Volatile Memory in Single-Poly CMOS
Increasing the energy efficiency of deep learning systems is critical for improving the cognitive capability of edge devices, often battery operated, as well as for data centers, constrained by the total power envelope.
Tommaso Rizzo +2 more
doaj +1 more source
Floating Gate Transistor‐Based Accurate Digital In‐Memory Computing for Deep Neural Networks
To improve the computing speed and energy efficiency of deep neural network (DNN) applications, in‐memory computing with nonvolatile memory (NVM) is proposed to address the time‐consuming and energy‐hungry data shuttling issue.
Runze Han +9 more
doaj +1 more source
Graphene Oxide-Based Memristive Logic-in-Memory Circuit Enabling Normally-Off Computing
Memristive logic-in-memory circuits can provide energy- and cost-efficient computing, which is essential for artificial intelligence-based applications in the coming Internet-of-things era.
Yeongkwon Kim +2 more
doaj +1 more source
In‐Memory Computing using Memristor Arrays with Ultrathin 2D PdSeOx/PdSe2 Heterostructure
In‐memory computing based on memristor arrays holds promise to address the speed and energy issues of the classical von Neumann computing system.
Yesheng Li +7 more
semanticscholar +1 more source
Architecture of Computing System based on Chiplet
Computing systems are widely used in medical diagnosis, climate prediction, autonomous vehicles, etc. As the key part of electronics, the performance of computing systems is crucial in the intellectualization of the equipment.
Guangbao Shan +5 more
doaj +1 more source
An Efficient and Robust Partial Differential Equation Solver by Flash-Based Computing in Memory
Flash memory-based computing-in-memory (CIM) architectures have gained popularity due to their remarkable performance in various computation tasks of data processing, including machine learning, neuron networks, and scientific calculations. Especially in
Yueran Qi +10 more
doaj +1 more source
Side-Channel Attack Analysis on In-Memory Computing Architectures [PDF]
In-memory computing (IMC) systems have great potential for accelerating data-intensive tasks such as deep neural networks (DNNs). As DNN models are generally highly proprietary, the neural network architectures become valuable targets for attacks. In IMC
Ziyu Wang +4 more
semanticscholar +1 more source
Multifunctional computing-in-memory SRAM cells based on two-surface-channel MoS2 transistors
Summary: Driven by technologies such as machine learning, artificial intelligence, and internet of things, the energy efficiency and throughput limitations of the von Neumann architecture are becoming more and more serious.
Fan Wang +7 more
doaj +1 more source
Parallel in-memory wireless computing
Parallel wireless digital communication with ultralow power consumption is critical for emerging edge technologies such as 5G and Internet of Things. However, the physical separation between digital computing units and analogue transmission units in traditional wireless technology leads to high power consumption.
Cong Wang +15 more
openaire +2 more sources

