Results 211 to 220 of about 236,648 (327)

Gut Bacteria Improve Depressive Symptoms by Degrading Cortisol into Androgen

open access: yesAdvanced Science, EarlyView.
Chronic stress is an important risk factor for stress‐related disorders such as depression. Stress hormone cortisol is essential for the pathogenesis of stress‐related disorders such as depression. Some gut microbiota degraded cortisol, and improve depressive symptoms.
Xiong Wang   +12 more
wiley   +1 more source

In Silico Modeling for Ex Vivo Placental Transfer of Morphine. [PDF]

open access: yesJ Clin Pharmacol, 2022
Ho H, Zhang S, Kurosawa K, Chiba K.
europepmc   +1 more source

CellPolaris: Transfer Learning for Gene Regulatory Network Construction to Guide Cell State Transitions

open access: yesAdvanced Science, EarlyView.
CellPolaris decodes how transcription factors guide cell fate by building gene regulatory networks from transcriptomic data using transfer learning. It generates tissue‐ and cell‐type‐specific networks, identifies master regulators in cell state transitions, and simulates TF perturbations in developmental processes.
Guihai Feng   +27 more
wiley   +1 more source

Inactivation of AXL in Cardiac Fibroblasts Alleviates Right Ventricular Remodeling in Pulmonary Hypertension

open access: yesAdvanced Science, EarlyView.
Pulmonary hypertension (PH) is a progressive condition with high morbidity and mortality, largely owing to right ventricular (RV) failure resulting from maladaptive remodeling. Our study provides strong evidence in support of a critical, detrimental role for AXL as a previously unrecognized determinant driving RV fibrotic pathology in PH.
Li‐Wei Wu   +17 more
wiley   +1 more source

In Silico Modeling of Safe Force Limits for Trismus Therapy Following Jaw Reconstruction. [PDF]

open access: yesHead Neck
Mohseni-Dargah M   +8 more
europepmc   +1 more source

Toward in Silico Modeling of Dynamic Combinatorial Libraries. [PDF]

open access: yesACS Cent Sci, 2022
Casciuc I   +7 more
europepmc   +1 more source

Wedelolactone, a Novel TLR2 Agonist, Promotes Neutrophil Differentiation and Ameliorates Neutropenia: A Multi‐Omics Approach to Unravel the Mechanism

open access: yesAdvanced Science, EarlyView.
Wedelolactone (WED), a natural TLR2 agonist, promotes neutrophil differentiation and enhances bactericidal function, offering a potential therapeutic strategy for neutropenia. Using a multi‐omics approach, this study reveals that WED activates the TLR2/MEK/ERK pathway, upregulating key transcription factors (PU.1, CEBPβ) to drive neutrophil development.
Long Wang   +16 more
wiley   +1 more source

Home - About - Disclaimer - Privacy