Results 251 to 260 of about 474,071 (357)

Magnetic Bioprinting and Actuation of Stretchable Muscle Tissue

open access: yesAdvanced Healthcare Materials, EarlyView.
Human and murine myoblasts labeled with iron oxide nanoparticles are magnetically bioprinted into wrench‐shaped tissues, which are then anchored between two magnetic needles. Mechanical stretching of these tissues enhances both their maturation and functional performance. Abstract Engineering tissues with precise, long‐lasting shapes and the capability
Noam Demri   +6 more
wiley   +1 more source

Changes of Lower Limb Bone Mineral Density in Division I Female Athletes During an Athletic Season. [PDF]

open access: yesOpen Access J Sports Med
Tolzman JE   +8 more
europepmc   +1 more source

Body Biofluids for Minimally‐Invasive Diagnostics: Insights, Challenges, Emerging Technologies, and Clinical Potential

open access: yesAdvanced Healthcare Materials, EarlyView.
Recent advances in diagnostics have accelerated the development of miniaturized wearable technologies for the continuous monitoring of diseases. This paradigm is shifting healthcare away from invasive, centralized blood tests toward decentralized monitoring, using alternative body biofluids.
Lanka Tata Rao   +2 more
wiley   +1 more source

Mineral Inclusions in Diamonds from Jagersfontein Mine

open access: yesInternational Kimberlite Conference Extended Abstracts: 1991, 2019
openaire   +2 more sources

Harnessing Advances in Bone Tissue Engineering for Design of Bone‐on‐Chip Systems

open access: yesAdvanced Healthcare Materials, EarlyView.
Bone‐on‐chip (BoC) systems demonstrate significant potential as next‐generation models to study human (patho)physiology and evaluate new therapies. However, progress toward functional, human‐like BoCs has been hindered by the structural and functional complexity of bone. This perspective discusses how insights from bone tissue engineering can guide BoC
Farhad Sanaei   +6 more
wiley   +1 more source

Platelet Lysate–Enriched Human Induced Pluripotent Stem Cell–Derived Chondrocyte Sheets for Bone Defect Repair via Endochondral Ossification

open access: yesAdvanced Healthcare Materials, EarlyView.
Human iPSC‐derived hypertrophic chondrocyte sheet promotes bone regeneration. Abstract Bone defects are a major clinical challenge, primarily owing to the limited self‐healing capacity of bones and the high risk of complications associated with conventional treatment strategies.
Yiwei Chen   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy