Results 21 to 30 of about 221,589 (315)
Infinitely many solutions for nonhomogeneous Choquard equations
In this paper, we study the following nonhomogeneous Choquard equation \begin{equation*} \begin{split} -\Delta u+V(x)u=(I_\alpha*|u|^p)|u|^{p-2}u+f(x),\qquad x\in \mathbb{R}^N, \end{split} \end{equation*} where $N\geq3,\alpha\in(0,N),p\in \big[\frac{N ...
Tao Wang, Hui Guo
doaj +1 more source
Infinitely many periodic solutions for second order Hamiltonian systems [PDF]
In this paper, we study the existence of infinitely many periodic solutions for second order Hamiltonian systems $\ddot{u}+\nabla_u V(t,u)=0$, where $V(t, u)$ is either asymptotically quadratic or superquadratic as $|u|\to \infty$.Comment: to appear in ...
Liu, Chungen, Zhang, Qingye
core +1 more source
On Existence of Infinitely Many Homoclinic Solutions
Using the concept of an isolating segment, some sufficient conditions for the existence of homoclinic solutions to nonautonomous ODEs are obtained. As an application it is shown that for all sufficiently small \(\varepsilon >0\) there exist infinitely many geometrically distinct solutions homoclinic to the trivial solution \(z=0\) to the equation ...
Wójcik, Klaudiusz, Zgliczyński, Piotr
openaire +2 more sources
Infinitely many periodic solutions for ordinary p(t)-Laplacian differential systems
In this paper, we consider the existence of infinitely many periodic solutions for some ordinary p(t)-Laplacian differential systems by minimax methods in critical point theory.
Chungen Liu, Yuyou Zhong
doaj +1 more source
Integrable subsystem of Yang--Mills dilaton theory [PDF]
With the help of the Cho-Faddeev-Niemi-Shabanov decomposition of the SU(2) Yang-Mills field, we find an integrable subsystem of SU(2) Yang-Mills theory coupled to the dilaton.
A Wereszczyński +7 more
core +2 more sources
In this paper, we study the existence of infinitely many solutions for an elliptic problem with the nonlinearity having an oscillatory behavior. We propose more general assumptions on the nonlinear term which improve the results occurring in the ...
Robert Stegliński
doaj +1 more source
Infinitely many positive solutions for a nonlocal problem with competing potentials
The present paper deals with a class of nonlocal problems. Under some suitable assumptions on the decay rate of the coefficients, we derive the existence of infinitely many positive solutions to the problem by applying reduction method.
Jing Yang
doaj +1 more source
Non-Uniqueness and prescribed energy for the continuity equation [PDF]
In this note we provide new non-uniqueness examples for the continuity equation by constructing infinitely many weak solutions with prescribed ...
Crippa, Gianluca +3 more
core +2 more sources
EXISTENCE OF INFINITELY MANY SOLUTIONS FOR SUBLINEAR ELLIPTIC PROBLEMS [PDF]
AbstractWe study the following nonlinear Dirichlet boundary value problem: where Ω is a bounded domain in ℝN(N ≥ 2) with a smooth boundary ∂Ω and g ∈ C(Ω × ℝ) is a function satisfying $\displaystyle \underset{|t|\rightarrow 0}{\lim}\frac{g(x, t)}{t}= \infty$ for all x ∈ Ω.
Zhong, Xuexiu, Zou, W.
openaire +2 more sources
Infinitely many solutions to the Yamabe problem on noncompact manifolds [PDF]
We establish the existence of infinitely many complete metrics with constant scalar curvature on prescribed conformal classes on certain noncompact product manifolds.
Bettiol, R., Piccione, P.
core +2 more sources

