In this paper, we study the existence of infinitely many solutions for an elliptic problem with the nonlinearity having an oscillatory behavior. We propose more general assumptions on the nonlinear term which improve the results occurring in the ...
Robert Stegliński
doaj +2 more sources
Construction of infinitely many solutions for a critical Choquard equation via local Pohožaev identities [PDF]
In this paper, we study a class of critical Choquard equations with axisymmetric potentials, -Δu+V(|x′|,x′′)u=(|x|-4∗|u|2)uinR6,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{
Fashun Gao+3 more
semanticscholar +1 more source
Infinitely many positive solutions of nonlinear Schrödinger equations [PDF]
AbstractThe paper deals with the equation $$-\Delta u+a(x) u =|u|^{p-1}u $$ - Δ u + a ( x ) u
Molle R., Passaseo D.
openaire +6 more sources
Existence of infinitely many solutions for an anisotropic equation using genus theory
Using genus theory, the existence of infinitely many solutions for an anisotropic equation involving the subcritical growth is proved. Also, by using Krasnoselskii genus and Clark's theorem, the existence of k ‐pairs of distinct solutions is proved ...
A. Razani, G. Figueiredo
semanticscholar +1 more source
A variational approach for mixed elliptic problems involving the p-Laplacian with two parameters
By exploiting an abstract critical-point result for differentiable and parametric functionals, we show the existence of infinitely many weak solutions for nonlinear elliptic equations with nonhomogeneous boundary conditions. More accurately, we determine
Armin Hadjian, Juan J. Nieto
doaj +1 more source
Infinitely many solutions for Schrödinger–Newton equations
We prove the existence of infinitely many non-radial positive solutions for the Schrödinger–Newton system [Formula: see text] provided that [Formula: see text] has the following behavior at infinity: [Formula: see text] where [Formula: see text] and [Formula: see text] are some positive constants.
Hu Y., Jevnikar A., Xie W.
openaire +2 more sources
Infinitely many solutions of degenerate quasilinear Schrödinger equation with general potentials
In this paper, we study the following quasilinear Schrödinger equation: − div ( a ( x , ∇ u ) ) + V ( x ) | x | − α p ∗ | u | p − 2 u = K ( x ) | x | − α p ∗ f ( x , u ) in R N , $$ -\operatorname{div}\bigl(a(x,\nabla u)\bigr)+V(x) \vert x \vert ...
Yan Meng, Xianjiu Huang, Jianhua Chen
doaj +1 more source
Infinitely many non-radial solutions for a Choquard equation
In this article, we consider the non-linear Choquard equation −Δu+V(∣x∣)u=∫R3∣u(y)∣2∣x−y∣dyuinR3,-\Delta u+V\left(| x| )u=\left(\mathop{\int }\limits_{{{\mathbb{R}}}^{3}}\frac{| u(y){| }^{2}}{| x-y| }{\rm{d}}y\right)u\hspace{1.0em}\hspace{0.1em}\text{in}\
Gao Fashun, Yang Minbo
doaj +1 more source
Infinitely many solutions for a gauged nonlinear Schrödinger equation with a perturbation
In this paper, we use the Fountain theorem under the Cerami condition to study the gauged nonlinear Schrödinger equation with a perturbation in R2. Under some appropriate conditions, we obtain the existence of infinitely many high energy solutions for ...
Jiafa Xu, Jie Liu, Donal O'Regan
doaj +1 more source
A sequence of positive solutions for sixth-order ordinary nonlinear differential problems
Infinitely many solutions for a nonlinear sixth-order differential equation are obtained. The variational methods are adopted and an oscillating behaviour on the nonlinear term is required, avoiding any symmetry assumption.
Gabriele Bonanno, Roberto Livrea
doaj +1 more source