Results 241 to 250 of about 15,399,652 (281)

KLK7 overexpression promotes an aggressive phenotype and facilitates peritoneal dissemination in colorectal cancer cells

open access: yesFEBS Open Bio, EarlyView.
KLK7, a tissue kallikrein‐related peptidase, is elevated in advanced colorectal cancer and associated with shorter survival. High KLK7 levels in ascites correlate with peritoneal metastasis. In mice, KLK7 overexpression increases metastasis. In vitro, KLK7 enhances cancer cell proliferation, migration, adhesion, and spheroid formation, driving ...
Yosr Z. Haffani   +6 more
wiley   +1 more source

Mycobacterial cell division arrest and smooth‐to‐rough envelope transition using CRISPRi‐mediated genetic repression systems

open access: yesFEBS Open Bio, EarlyView.
CRISPRI‐mediated gene silencing and phenotypic exploration in nontuberculous mycobacteria. In this Research Protocol, we describe approaches to control, monitor, and quantitatively assess CRISPRI‐mediated gene silencing in M. smegmatis and M. abscessus model organisms.
Vanessa Point   +7 more
wiley   +1 more source

Pioglitazone plus (−)‐epigallocatechin gallate: a novel approach to enhance osteogenic performance in aged bone marrow mesenchymal stem cells

open access: yesFEBS Open Bio, EarlyView.
Aged human bmMSCs are seeded in the scaffold. Osteoblastic induction can slightly increase cell's bone‐forming activity to produce bone‐like tissues, shown as the sporadic xylenol orange‐stained spots (the lower left image). Notably, pioglitazone plus EGCG co‐treatment dramatically increases cell's bone‐forming activity and bone‐like tissue production (
Ching‐Yun Chen   +6 more
wiley   +1 more source

Enzymatic degradation of biopolymers in amorphous and molten states: mechanisms and applications

open access: yesFEBS Open Bio, EarlyView.
This review explains how polymer morphology and thermal state shape enzymatic degradation pathways, comparing amorphous and molten biopolymer structures. By integrating structure–reactivity principles with insights from thermodynamics and enzyme engineering, it highlights mechanisms that enable efficient polymer breakdown.
Anđela Pustak, Aleksandra Maršavelski
wiley   +1 more source

Home - About - Disclaimer - Privacy