Results 151 to 160 of about 35,305 (271)

Interface Engineering Strategies for Realizing Anode‐Free Sodium Batteries: A Review

open access: yesAdvanced Energy Materials, EarlyView.
This review examines anode‐free sodium batteries as a promising solution for advancing sodium‐based energy storage. It focuses on the role of interface engineering in addressing challenges such as sodium deposition, interface stability, and dendrite growth.
Yulian Dong   +6 more
wiley   +1 more source

Gambling-like Features in fan Tokens. [PDF]

open access: yesJ Gambl Stud, 2023
Lopez-Gonzalez H, Griffiths MD.
europepmc   +1 more source

Resolving Oxidative and Corrosive Calendar‐Aging via Electrolyte Engineering for Stable Lithium Metal Batteries

open access: yesAdvanced Energy Materials, EarlyView.
A weakly solvating ether solvent, 1,2‐dimethoxypropane (DMP), is proposed for use in localized high‐concentration electrolytes (LHCEs) for lithium metal batteries (LMBs). These DMP‐based LHCEs simultaneously suppress lithium metal corrosion and cathode degradation—two interrelated processes that accelerate calendar aging of LMBs.
Jisub Kim   +14 more
wiley   +1 more source

Multiscale Carbon‐Integrated Silicon Anode for Stable Cycling Under Practical Lithium‐Ion Battery Conditions

open access: yesAdvanced Energy Materials, EarlyView.
To overcome silicon anode instability, a hierarchical silicon/carbon composite fabricated from industrial waste via a scalable milling process is demonstrated. In‐depth post‐mortem analysis reveals how functional carbons—a CNT network and graphene shell—synergistically suppress degradation. This robust design delivers outstanding stability in practical
Young‐Ro Lee   +13 more
wiley   +1 more source

Safety of Sodium‐Ion Batteries: Evaluation and Perspective from Component Materials to Cells, Modules, and Packs

open access: yesAdvanced Energy Materials, EarlyView.
This review provides a bottom‐up evaluation of sodium‐ion battery safety, linking material degradation mechanisms, cell engineering parameters, and module/pack assembly. It emphasizes that understanding intrinsic material stability and establishing coordinated engineering control across hierarchical levels are vital for preventing degradation coupling ...
Won‐Gwang Lim   +5 more
wiley   +1 more source

Improving primary care access for rural women Veterans: the Boost Team. [PDF]

open access: yesFront Health Serv
Cohen JK   +8 more
europepmc   +1 more source

Upscaling Sodium‐Ion Battery Cells: From Aqueous Processing to Performance Assessment of Hard Carbon|Prussian White Pouch Cells

open access: yesAdvanced Energy Materials, EarlyView.
This study investigates the feasibility of scaling up Prussian White (PW)‐based cathode manufacturing at a pilot scale. Through careful PW dehydration combined with optimized aqueous processing, we report the stepwise development of industrially relevant 1 Ah pouch cells and evaluate their performance under various conditions.
Faduma M. Maddar   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy