Results 201 to 210 of about 645,276 (281)

Opportunities of Semiconducting Oxide Nanostructures as Advanced Luminescent Materials in Photonics

open access: yesAdvanced Materials, EarlyView.
The review discusses the challenges of wide and ultrawide bandgap semiconducting oxides as a suitable material platform for photonics. They offer great versatility in terms of tuning microstructure, native defects, doping, anisotropy, and micro‐ and nano‐structuring. The review focuses on their light emission, light‐confinement in optical cavities, and
Ana Cremades   +7 more
wiley   +1 more source

Biomimetic Gradient Lubrication Hydrogel Contrived by Self-Reinforced MOFs Nanoparticle Network. [PDF]

open access: yesNanomicro Lett
Liu D   +10 more
europepmc   +1 more source

2D Co‐Mo‐Hydroxide‐Based Multifunctional Material for the Development of H2‐Based Clean Energy Technologies

open access: yesAdvanced Materials, EarlyView.
2D α‐Co(OH)2 interleaved with Mo species displays an appealing dual functionality for the production and use of green hydrogen.Mo incorporation greatly benefits the electrochemical behaviour in Oxygen Evolution Reaction for H2 production, while the magnetocaloric response at liquid H2 temperature paves the way for alternative cryogenic refrigerants ...
Daniel Muñoz‐Gil   +14 more
wiley   +1 more source

Multianalytical Study of Amuletic and Talismanic Islamic-African Paper Manuscripts in the Slovene Ethnographic Museum. [PDF]

open access: yesChempluschem
Elnaggar A   +12 more
europepmc   +1 more source

Colloidal Heterostructures Enable Interfacial Transport of Immiscible Molecules in Printable Organohydrogels

open access: yesAdvanced Materials, EarlyView.
Multiphase printable organohydrogels with tunable microstructures are developed to control molecular transport pathways for immiscible cargo. The tortuosity and domain size of the colloidal phases are tuned by adjusting temperature and shear during processing, which enables the tailoring of diffusion kinetics due to different transport pathways.
Riley E. Dowdy‐Green   +4 more
wiley   +1 more source

Porous Iridium Oxide Inverse Opal Catalysts Enable Efficient PEM Water Electrolysis

open access: yesAdvanced Materials, EarlyView.
Porous iridium‐based inverse opal (IrOx‐IO) structures are introduced as high‐performance, unsupported PEM‐WE anode catalysts. Their electrochemical behavior is analyzed through porosity/surface area tuning, voltage breakdown, and circuit modeling.
Sebastian Möhle   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy