Results 211 to 220 of about 3,162,958 (354)
This study shows that copy number variations (CNVs) can be reliably detected in formalin‐fixed paraffin‐embedded (FFPE) solid cancer samples using ultra‐low‐pass whole‐genome sequencing, provided that key (pre)‐analytical parameters are optimized.
Hanne Goris +10 more
wiley +1 more source
Dypasi Methodology: from Information Retrieval to Integration of Hazid Process
Nicola Paltrinieri +4 more
openalex +2 more sources
Single circulating tumor cells (sCTCs) from high‐grade serous ovarian cancer patients were enriched, imaged, and genomically profiled using WGA and NGS at different time points during treatment. sCTCs revealed enrichment of alterations in Chromosomes 2, 7, and 12 as well as persistent or emerging oncogenic CNAs, supporting sCTC identity.
Carolin Salmon +9 more
wiley +1 more source
Advances in Integrated Lignin Valorization Pathways for Sustainable Biorefineries. [PDF]
Ntunka MG, Vallabh ST.
europepmc +1 more source
Redox regulation meets metabolism: targeting PRDX2 to prevent hepatocellular carcinoma
PRDX2 acts as a central redox hub linking metabolic dysfunction‐associated steatohepatitis (MASH) to hepatocellular carcinoma (HCC). In normal hepatocytes, PRDX2 maintains redox balance and metabolic homeostasis under oxidative stress. In contrast, during malignant transformation, PRDX2 promotes oncogenic signaling, stemness, and tumor initiation ...
Naroa Goikoetxea‐Usandizaga +2 more
wiley +1 more source
Etoposide induces DNA damage, activating p53‐dependent apoptosis via caspase‐3/7, which cleaves PARP1. Dammarenediol II enhances this apoptotic pathway by suppressing O‐GlcNAc transferase activity, further decreasing O‐GlcNAcylation. The reduction in O‐GlcNAc levels boosts p53‐driven apoptosis and influences the Akt/GSK3β/mTOR signaling pathway ...
Jaehoon Lee +8 more
wiley +1 more source
Bridging Medicine and Dentistry Through Clinical Pathology: A Call for Integration. [PDF]
Maruyama T.
europepmc +1 more source
Targeting p38α in cancer: challenges, opportunities, and emerging strategies
p38α normally regulates cellular stress responses and homeostasis and suppresses malignant transformation. In cancer, however, p38α is co‐opted to drive context‐dependent proliferation and dissemination. p38α also supports key functions in cells of the tumor microenvironment, including fibroblasts, myeloid cells, and T lymphocytes.
Angel R. Nebreda
wiley +1 more source

