Results 181 to 190 of about 3,898,831 (346)

Functional Materials for Environmental Energy Harvesting in Smart Agriculture via Triboelectric Nanogenerators

open access: yesAdvanced Functional Materials, EarlyView.
This review explores functional and responsive materials for triboelectric nanogenerators (TENGs) in sustainable smart agriculture. It examines how particulate contamination and dirt affect charge transfer and efficiency. Environmental challenges and strategies to enhance durability and responsiveness are outlined, including active functional layers ...
Rafael R. A. Silva   +9 more
wiley   +1 more source

MOFs and COFs in Electronics: Bridging the Gap between Intrinsic Properties and Measured Performance

open access: yesAdvanced Functional Materials, EarlyView.
Metal‐organic frameworks (MOFs) and covalent organic frameworks (COFs) hold promise for advanced electronics. However, discrepancies in reported electrical conductivities highlight the importance of measurement methodologies. This review explores intrinsic charge transport mechanisms and extrinsic factors influencing performance, and critically ...
Jonas F. Pöhls, R. Thomas Weitz
wiley   +1 more source

Ambient intelligence [PDF]

open access: yes, 2006
Gegov, Alexander, Sanders, David
core  

Multicolor Optoelectronic Synapse Enabled by Photon‐Modulated Remote Doping in Solution‐Processed Van Der Waals Heterostructures

open access: yesAdvanced Functional Materials, EarlyView.
Multicolor optoelectronic synapses are realized by vertically integrating solution‐processed MoS2 thin‐film and SWCNT. The electronically disconnected but interactive MoS2 enables photon‐modulated remote doping, producing a bi‐directional photoresponse.
Jihyun Kim   +8 more
wiley   +1 more source

Planning abilities of children aged 4 years and 9 months to 8 1/2 years: Effects of age, fluid intelligence and school type on performance in the Tower of London test [PDF]

open access: diamond, 2008
Leandro Fernandes Malloy‐Diniz   +5 more
openalex   +1 more source

Unleashing the Power of Machine Learning in Nanomedicine Formulation Development

open access: yesAdvanced Functional Materials, EarlyView.
A random forest machine learning model is able to make predictions on nanoparticle attributes of different nanomedicines (i.e. lipid nanoparticles, liposomes, or PLGA nanoparticles) based on microfluidic formulation parameters. Machine learning models are based on a database of nanoparticle formulations, and models are able to generate unique solutions
Thomas L. Moore   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy